
kedro-mlflow
Release 0.12.0

Yolan Honoré-Rougé

Dec 19, 2023

CONTENTS

1 Introduction 1
1.1 Introduction . 1

1.1.1 What is Kedro? . 1
1.1.2 What is Mlflow? . 1
1.1.3 A brief comparison between Kedro and Mlflow . 2

1.1.3.1 Configuration and prototyping: Kedro 1 - 0 Mlflow 2
1.1.3.2 Versioning: Kedro 1 - 1 Mlflow . 2
1.1.3.3 Model packaging and service: Kedro 1 - 2 Mlflow 3
1.1.3.4 Conclusion: Use Kedro and add Mlflow for machine learning projects 3

1.2 Motivation . 3
1.2.1 When should I use kedro-mlflow? . 3
1.2.2 Why should I use kedro-mlflow? . 4

1.2.2.1 Benchmark of existing solutions . 4
1.2.2.2 Enforcing Kedro principles . 4

2 Introduction 5
2.1 Installation guide . 5

2.1.1 Pre-requisites . 5
2.1.1.1 Create a virtual environment . 5
2.1.1.2 Check your kedro version . 5

2.1.2 Install the plugin . 6
2.1.2.1 Install from PyPI . 6
2.1.2.2 Install from sources . 6

2.1.3 Check the installation . 6
2.1.4 Available commands . 6

2.2 Initialize your Kedro project . 7
2.2.1 Create a kedro project . 7
2.2.2 Activate kedro-mlflow in your kedro project . 7

2.2.2.1 Setting up the kedro-mlflow configuration file 7
2.2.2.2 Declaring kedro-mlflow hooks . 8

2.2.2.2.1 Declaring hooks through auto-discovery (for kedro>=0.16.4) [Default
behaviour] . 8

2.2.2.2.2 Declaring hooks statically in settings.py 8
2.3 Migration guide . 8

2.3.1 Migration from 0.10.x to 0.11.x . 8
2.3.2 Migration from 0.9.x to 0.10.x . 9
2.3.3 Migration from 0.8.x to 0.9.x . 9
2.3.4 Migration from 0.7.x to 0.8.x . 9
2.3.5 Migration from 0.6.x to 0.7.x . 10
2.3.6 Migration from 0.5.x to 0.6.x . 10

i

2.3.7 Migration from 0.4.x to 0.5.x . 10
2.3.8 Migration from 0.4.0 to 0.4.1 . 10
2.3.9 Migration from 0.3.x to 0.4.x . 10

2.3.9.1 Catalog entries . 10
2.3.9.2 Hooks . 10
2.3.9.3 KedroPipelineModel . 11

3 Introduction 13
3.1 Goal of the tutorial . 13
3.2 Example project . 13

3.2.1 Install the plugin in a virtual environment . 13
3.2.2 Install the toy project . 13

3.2.2.1 Installation with kedro>=0.16.3 . 14
3.2.2.2 Installation with kedro>=0.16.0, <=0.16.2 . 14

3.2.3 Install dependencies . 15
3.3 First steps with the plugin . 15

3.3.1 Initialize kedro-mlflow . 15
3.3.2 Run the pipeline . 17
3.3.3 Open the UI . 20

3.3.3.1 Parameters versioning . 22
3.3.3.2 Journal information . 24
3.3.3.3 Artifacts . 24

3.3.4 Going further . 25

4 Introduction 27
4.1 Configure mlflow inside your project . 27

4.1.1 Context: mlflow tracking under the hood . 27
4.1.2 The mlflow.yml file . 28

4.1.2.1 Configure the tracking server . 28
4.1.2.1.1 Configure the tracking and registry uri 28
4.1.2.1.2 Configure the credentials . 29

4.1.2.1.2.1 Default credentials with environment variables 29
4.1.2.1.2.2 Authentication with expiring tokens 29

4.1.2.2 Deactivate tracking under conditions . 30
4.1.2.3 Configure mlflow experiment . 30
4.1.2.4 Configure the run . 30
4.1.2.5 Extra tracking configuration . 31
4.1.2.6 Configure the user interface . 31

4.2 Parameters versioning . 32
4.2.1 Automatic parameters versioning . 32
4.2.2 How does MlflowNodeHook operates under the hood? . 32
4.2.3 Frequently Asked Questions . 32

4.2.3.1 Will parameters be recorded if the pipeline fails during execution? 32
4.2.3.2 How are parameters detected by the plugin? . 33

4.3 Versioning Kedro DataSets . 33
4.3.1 What is artifact tracking? . 33
4.3.2 How to version data in a kedro project? . 33
4.3.3 Frequently asked questions . 34

4.3.3.1 Can I pass extra parameters to the MlflowArtifactDataset for finer control? . . 34
4.3.3.2 Can I use the MlflowArtifactDataset in interactive mode? 34
4.3.3.3 How do I upload an artifact to a non local destination (e.g. an S3 or blog storage)? . 34
4.3.3.4 Can I log an artifact in a specific run? . 35
4.3.3.5 Can I reload an artifact from an existing run to use it in another run ? 35
4.3.3.6 Can I create a remote folder/subfolders architecture to organize the artifacts? 35

ii

4.4 Version model . 36
4.4.1 What is model tracking? . 36
4.4.2 How to track models using MLflow in Kedro project? . 36
4.4.3 Frequently asked questions? . 36

4.4.3.1 How is it working under the hood? . 36
4.4.3.2 How can I track a custom MLflow model flavor? 37
4.4.3.3 How can I save model locally and log it in MLflow in one step? 37

4.5 Version metrics . 37
4.5.1 What is metric tracking? . 37
4.5.2 How to version metrics in a kedro project? . 38

4.5.2.1 Saving a single float as a metric with MlflowMetricDataset 38
4.5.2.2 Saving the evolution of a metric during training with MlflowMetricHistoryDataset 39
4.5.2.3 Saving several metrics with their entire history with

MlflowMetricsHistoryDataset . 40
4.5.3 How to return metrics from a node? . 41

4.6 Opening the UI . 42
4.6.1 The mlflow user interface . 42
4.6.2 The kedro-mlflow helper . 42

5 Introduction 43
5.1 Pipeline serving with kedro-mlflow . 43

5.1.1 Introduction to Mlflow Models . 43
5.1.2 Pre-requisite for serving a pipeline . 43

5.2 Register a pipeline to mlflow with KedroPipelineModel custom mlflow model 44
5.3 Register a pipeline to mlflow with KedroPipelineModel custom mlflow model 45
5.4 Automatically log an inference after running the training pipeline 45

5.4.1 Getting started . 45
5.4.2 Complete step by step demo project with code . 46
5.4.3 Motivation . 47

5.5 Deployment patterns for kedro pipelines . 47

6 Introduction 49
6.1 Why we need a mlops framework to manage machine learning development lifecycle 49

6.1.1 Machine learning deployment is hard because it comes with a lot of constraints and no ade-
quate tooling . 49

6.1.1.1 Identifying the challenges to address when deploying machine learning 49
6.1.1.2 A comparison between traditional software development and machine learning projects 50

6.1.1.2.1 ML and traditional software have different moving parts 50
6.1.1.2.2 ML and traditional software have different development lifecycles 51

6.1.2 Deployment issues addressed by kedro-mlflow and their solutions 51
6.1.2.1 Out of scope . 51
6.1.2.2 Issue 1: The training process is poorly reproducible 52
6.1.2.3 Issue 2: The data scientist and stakeholders focus on training 52
6.1.2.4 Issue 3: Inference and training are entirely decoupled 52
6.1.2.5 Issue 4: Data scientists do not handle business objects 53
6.1.2.6 Overcoming these problems: support an organisational solution with an efficient tool 53

6.2 The components of a machine learning application . 53
6.2.1 Definition: apps of a machine learning projects . 53
6.2.2 Difference between an app and a Kedro pipeline . 54
6.2.3 Apps development lifecycle in a machine learning project 54

6.2.3.1 The data scientist creates at least part of the 3 apps 54
6.2.3.2 The etl_app . 55
6.2.3.3 The ml_app . 55
6.2.3.4 The user_app . 55

iii

6.3 kedro-mlflow mlops solution . 56
6.3.1 Reminder . 56
6.3.2 Enforcing these principles with a dedicated tool . 56

6.3.2.1 Synchronizing training and inference pipeline . 56
6.3.2.2 Packaging and serving a Kedro Pipeline . 57
6.3.2.3 kedro-mlflow’s magic: inference autologging . 58
6.3.2.4 Reuse the model in kedro . 58

7 Introduction 59
7.1 How to use kedro-mlflow in a notebook . 59

7.1.1 Reminder on mlflow’s limitations with interactive use . 59
7.1.2 Setup mlflow configuration in your notebook . 59
7.1.3 Difference with running through the CLI . 60
7.1.4 Guidelines and best practices suggestions . 60

8 Introduction 61
8.1 New DataSet . 61

8.1.1 MlflowArtifactDataset . 61
8.1.2 Metrics DataSets . 62

8.1.2.1 MlflowMetricDataset . 62
8.1.2.2 MlflowMetricHistoryDataset . 62

8.1.3 Models DataSets . 62
8.1.3.1 MlflowModelTrackingDataset . 62
8.1.3.2 MlflowModelLocalFileSystemDataset . 63
8.1.3.3 MlflowModelRegistryDataset . 64

8.2 Hooks . 65
8.2.1 MlflowHook . 65

8.3 Pipelines . 65
8.3.1 PipelineML and pipeline_ml_factory . 65

8.4 Cli commands . 67
8.4.1 init . 67
8.4.2 ui . 67
8.4.3 modelify . 67

8.5 Configuration . 68

9 kedro_mlflow package 69
9.1 Datasets . 69

9.1.1 Artifact DataSet . 69
9.1.2 Metrics DataSet . 69
9.1.3 Models DataSet . 70

9.2 CLI . 75
9.2.1 init . 75
9.2.2 ui . 75
9.2.3 modelify . 76

9.3 Pipelines . 77
9.4 Custom Mlflow Models . 82
9.5 Configuration . 84
9.6 Notebook . 90
9.7 Hooks . 90

9.7.1 Node Hook . 90
9.7.2 Pipeline Hook . 90

10 Indices and tables 91

Python Module Index 93

iv

Index 95

v

vi

CHAPTER

ONE

INTRODUCTION

1.1 Introduction

1.1.1 What is Kedro?

Kedro is a python package which facilitates the prototyping of data pipelines. It aims at enforcing software engineering
best practices (separation between I/O and compute, abstraction, templating. . .). It is specifically useful for machine
learning projects since it provides within the same interface interactive objects for the exploration phase, and Command
Line Interface (CLI) and configuration files for the production phase. This makes the transition from exploration to
production as smooth as possible.

For more details, see Kedro’s official documentation.

1.1.2 What is Mlflow?

Mlflow is a library which manages the lifecycle of machine learning models. Mlflow provides 4 modules:

• Mlflow Tracking: This modules focuses on experiment versioning. Its goal is to store all the objects needed
to reproduce any code execution. This includes code through version control, but also parameters and artifacts
(i.e objects fitted on data like encoders, binarizers. . .). These elements vary wildly during machine learning
experimentation phase. Mlflow also enable to track metrics to evaluate runs, and provides a User Interface (UI)
to browse the different runs and compare them.

• Mlflow Projects: This module provides a configuration files and CLI to enable reproducible execution of
pipelines in production phase.

• Mlflow Models: This module defines a standard way for packaging machine learning models, and provides
built-in ways to serve registered models. Such standardization enable to serve these models across a wide range
of tools.

• Mlflow Model Registry: This modules aims at monitoring deployed models. The registry manages the transi-
tion between different versions of the same model (when the dataset is retrained on new data, or when parameters
are updated) while it is in production.

For more details, see Mlflow’s official documentation.

1

https://kedro.readthedocs.io/en/stable/01_introduction/01_introduction.html
https://www.mlflow.org/docs/latest/tracking.html
https://www.mlflow.org/docs/latest/projects.html
https://www.mlflow.org/docs/latest/models.html
https://www.mlflow.org/docs/latest/model-registry.html
https://www.mlflow.org/docs/latest/index.html

kedro-mlflow, Release 0.12.0

1.1.3 A brief comparison between Kedro and Mlflow

While Kedro and Mlflow do not compete in the same field, they provide some overlapping functionalities. Mlflow
is specifically dedicated to machine learning and its lifecycle management, while Kedro focusing on data pipeline
development. Below chart compare the different functionalities:

We discuss hereafter how the two libraries compete on the different functionalities and eventually complete each others.

1.1.3.1 Configuration and prototyping: Kedro 1 - 0 Mlflow

Mlflow and Kedro are essentially overlapping on the way they offer a dedicated configuration files for running the
pipeline from CLI. However:

• Mlflow provides a single configuration file (the MLProject) where all elements are declared (data, parameters
and pipelines). Its goal is mainly to enable CLI execution of the project, but it is not very flexible. In my opinion,
this file is production oriented and is not really intended to use for exploration.

• Kedro offers a bunch of files (catalog.yml, parameters.yml, pipeline.py) and their associated abstraction
(AbstractDataset, DataCatalog, Pipeline and node objects). Kedro is much more opinionated: each
object has a dedicated place (and only one!) in the template. This makes the framework both exploration and
production oriented. The downside is that it could make the learning curve a bit sharper since a newcomer has
to learn all Kedro specifications. It also provides a kedro-viz plugin to visualize the DAG interactively, which
is particularly handy in medium-to-big projects.

Kedro is a clear winner here, since it provides more functionnalities than Mlflow. It handles very
well by design the exploration phase of data science projects when Mlflow is less flexible.

1.1.3.2 Versioning: Kedro 1 - 1 Mlflow

** This section will be updated soon with the brand new experiment tracking functionality of kedro**

The Kedro Journal aimed at reproducibility (it was removed in kedro==0.18), but is not focused on machine learn-
ing. The Journal keeps track of two elements:

• the CLI arguments, including on the fly parameters. This makes the command used to run the pipeline fully
reproducible.

• the AbstractVersionedDataset for which versioning is activated. It consists in copying the data whom
versioned argument is True when the save method of the AbstractVersionedDataset is called. This
approach suffers from two main drawbacks:

– the configuration is assumed immutable (including parameters), which is not realistic ni machine learning
projects where they are very volatile. To fix this, the git sha has been recently added to the Journal,
but it has still some bugs in my experience (including the fact that the current git sha is logged even if
the pipeline is ran with uncommitted change, which prevents reproducibility). This is still recent and will
likely evolve in the future.

– there is no support for browsing old runs, which prevents cleaning the database with old and unused datasets,
compare runs between each other. . .

On the other hand, Mlflow:

• distinguishes between artifacts (i.e. any data file), metrics (integers that may evolve over time) and parameters.
The logging is very straightforward since there is a one-liner function for logging the desired type. This separation
makes further manipulation easier.

• offers a way to configure the logging in a database through the mlflow_tracking_uri parameter. This
database-like logging comes with easy querying of different runs through a client (for instance “find the most
recent run with a metric at least above a given threshold” is immediate with Mlflow but hacky in Kedro).

2 Chapter 1. Introduction

https://github.com/quantumblacklabs/kedro/issues/406
https://www.mlflow.org/docs/latest/python_api/mlflow.client.html#mlflow.client.MlflowClient

kedro-mlflow, Release 0.12.0

• comes with a User Interface (UI) which enable to browse / filter / sort the runs, display graphs of the metrics,
render plots. . . This make the run management much easier than in Kedro.

• has a command to reproduce exactly the run from a given git sha, which is not possible in Kedro.

Mlflow is a clear winner here, because UI and run querying are must-have for machine learning
projects. It is more mature than Kedro for versioning and more focused on machine learning.

1.1.3.3 Model packaging and service: Kedro 1 - 2 Mlflow

Kedro offers a way to package the code to make the pipelines callable, but does not manage specifically machine
learning models.

Mlflow offers a way to store machine learning models with a given “flavor”, which is the minimal amount of information
necessary to use the model for prediction:

• a configuration file

• all the artifacts, i.e. the necessary data for the model to run (including encoder, binarizer. . .)

• a loader

• a conda configuration through an environment.yml file

When a stored model meets these requirements, Mlflow provides built-in tools to serve the model (as an API or for
batch prediction) on many machine learning tools (Microsoft Azure ML, Amazon Sagemaker, Apache SparkUDF) and
locally.

Mlflow is currently the only tool which adresses model serving. This is currently not the top priority
for Kedro, but may come in the future (through Kedro Server maybe?)

1.1.3.4 Conclusion: Use Kedro and add Mlflow for machine learning projects

In my opinion, Kedro’s will to enforce software engineering best practice makes it really useful for machine learning
teams. It is extremely well documented and the support is excellent, which makes it very user friendly even for peo-
ple with no computer science background. However, it lacks some machine learning-specific functionalities (better
versioning, model service), and it is where Mlflow fills the gap.

1.2 Motivation

1.2.1 When should I use kedro-mlflow?

Basically, you should use kedro-mlflow in any Kedro project which involves machine learning / deep learning.
As stated in the introduction, Kedro’s current versioning (as of version 0.16.6) is not sufficient for machine learning
projects: it lacks a UI and a run management system. Besides, the KedroPipelineModel ability to serve a kedro
pipeline as an API or a batch in one line of code is a great addition for collaboration and transition to production.

If you do not use Kedro or if you do pure data processing which do not involve machine learning, this plugin is not
what you are seeking for ;)

1.2. Motivation 3

https://mlflow.org/docs/latest/tracking.html#id7
https://github.com/quantumblacklabs/kedro/issues/297
https://github.com/quantumblacklabs/kedro/issues/143

kedro-mlflow, Release 0.12.0

1.2.2 Why should I use kedro-mlflow?

1.2.2.1 Benchmark of existing solutions

This paragraph gives a (quick) overview of existing solutions for mlflow integration inside Kedro projects.

Mlflow is very simple to add to any existing code. It is a 2-step process:

• add log_{XXX} (either param, artifact, metric or model) functions where they are needed inside the code

• add a MLProject at the root of the project to enable CLI execution. This file must contain all the possible
execution steps (like the pipeline.py / hooks.py in a kedro project).

Including mlflow inside a kedro project is consequently very easy: the logging functions can be added in the code,
and the MLProject is very simple and is composed almost only of the kedro run command. You can find examples
of such implementations:

• the medium paper by QuantumBlack employees.

• the associated github repo

• other examples can be found on Github, but AFAIK all of them follow the very same principles.

1.2.2.2 Enforcing Kedro principles

Above implementations have the advantage of being very straightforward and mlflow compliant, but they break several
Kedro principles:

• the MLFLOW_TRACKING_URI which registers the database where runs are logged is declared inside the code in-
stead of a configuration file, which hinders portability across environments and makes transition to production
more difficult

• the logging of different elements can be put in many places in the Kedro template (in the code of any function
involved in a node, in a Hook, in the ProjectContext, in a transformer. . .). This is not compliant with the
Kedro template where any object has a dedicated location. We want to avoid the logging to occur anywhere
because:

– it is very error-prone (one can forget to log one parameter)

– it is hard to modify (if you want to remove / add / modify an mlflow action you have to find it in the code)

– it prevents reuse (re-usable function must not contain mlflow specific code unrelated to their functional
specificities, only their execution must be tracked).

kedro-mlflow enforces these best practices while implementing a clear interface for each mlflow action in Kedro
template. Below chart maps the mlflow action to perform with the Python API provided by kedro-mlflow and the
location in Kedro template where the action should be performed.

kedro-mlflow does not currently provide interface to set tags outside a Kedro Pipeline. Some of above decisions
are subject to debate and design decisions (for instance, metrics are often updated in a loop during each epoch / training
iteration and it does not always make sense to register the metric between computation steps, e.g. as a an I/O operation
after a node run).

Note: You do not need any MLProject file to use mlflow inside your Kedro project. As seen in the introduction, this
file overlaps with Kedro configuration files.

4 Chapter 1. Introduction

https://medium.com/quantumblack/deploying-and-versioning-data-pipelines-at-scale-942b1d81b5f5
https://github.com/tgoldenberg/kedro-mlflow-example

CHAPTER

TWO

INTRODUCTION

2.1 Installation guide

2.1.1 Pre-requisites

2.1.1.1 Create a virtual environment

I strongly recommend to use conda (a package manager) to create an environment in order to avoid version conflicts
between packages.

I also recommend to read Kedro installation guide to set up your Kedro project.

conda create -n <your-environment-name> python=<3.[6-8].X>

For the rest of the section, we assume the envirpnment is activated:

conda activate <your-environment-name>

2.1.1.2 Check your kedro version

If you have an existing environment with kedro already installed, make sure its version is above 0.16.0.
kedro-mlflow cannot be used with kedro<0.16.0, and if you install it in an existing environment, it will reinstall
a more up-to-date version of kedro and likely mess your project up until you reinstall the proper version of kedro (the
one you originally created the project with).

pip show kedro

should return:

Name: kedro
Version: <your-kedro-version> # <-- make sure it is above 0.16.0, <0.17.0
Summary: Kedro helps you build production-ready data and analytics pipelines
Home-page: https://github.com/quantumblacklabs/kedro
Author: QuantumBlack Labs
Author-email: None
License: Apache Software License (Apache 2.0)
Location: <...>\anaconda3\envs\<your-environment-name>\lib\site-packages
Requires: pip-tools, cachetools, fsspec, toposort, anyconfig, PyYAML, click, pluggy,␣
→˓jmespath, python-json-logger, jupyter-client, setuptools, cookiecutter

5

https://kedro.readthedocs.io/en/latest/get_started/install.html

kedro-mlflow, Release 0.12.0

2.1.2 Install the plugin

The current version of the plugin is compatible with kedro>=0.16.0. Since Kedro tries to enforce backward compat-
ibility, it will very likely remain compatible with further versions.

2.1.2.1 Install from PyPI

You can install kedro-mlflow plugin from PyPi with pip:

pip install --upgrade kedro-mlflow

2.1.2.2 Install from sources

You may want to install the master branch which has unreleased features:

pip install git+https://github.com/Galileo-Galilei/kedro-mlflow.git

2.1.3 Check the installation

Type kedro info in a terminal to check the installation. If it has succeeded, you should see the following ascii art:

_ _
| | _____ __| |_ __ ___
| |/ / _ \/ _` | '__/ _ \
| < __/ (_| | | | (_) |
|_|____|__,_|_| ___/
v0.16.<x>

kedro allows teams to create analytics
projects. It is developed as part of
the Kedro initiative at QuantumBlack.

Installed plugins:
kedro_mlflow: 0.12.0 (hooks:global,project)

The version 0.12.0 of the plugin is installed and has both global and project commands.

That’s it! You are now ready to go!

2.1.4 Available commands

With the kedro mlflow -h command outside of a kedro project, you now see the following output:

Usage: kedro mlflow [OPTIONS] COMMAND [ARGS]...

Use mlflow-specific commands inside kedro project.

Options:
-h, --help Show this message and exit.

(continues on next page)

6 Chapter 2. Introduction

kedro-mlflow, Release 0.12.0

(continued from previous page)

Commands:
new Create a new kedro project with updated template.

Note: For now, the kedro mlflow new command is not implemented. You must use kedro new to create a project,
and then call kedro mlflow init inside this new project.

2.2 Initialize your Kedro project

This section assume that you have installed kedro-mlflow in your virtual environment.

2.2.1 Create a kedro project

This plugin must be used in an existing kedro project. If you do not have a kedro project yet, you can create it with
kedro new command. See the kedro docs for a tutorial.

If you do not have a real-world project, you can use a kedro example and follow the “Getting started” example to make
a demo of this plugin out of the box.

2.2.2 Activate kedro-mlflow in your kedro project

In order to use the kedro-mlflow plugin, you need to setup its configuration and declare its hooks. Those 2 actions
are detailled in the following paragraphs.

2.2.2.1 Setting up the kedro-mlflow configuration file

kedro-mlflow is configured through an mlflow.yml file. The recommended way to initialize the mlflow.yml is by
using the kedro-mlflow CLI , but you can create it manually.

Note: Since kedro-mlflow>=0.11.2, the configuration file is optional. However, the plugin will use default
mlflow configuration. Specifically, the runs will be stored in a mlruns folder at the root fo the kedro project since no
mlflow_tracking_uri is configured.

Set the working directory at the root of your kedro project:

cd path/to/your/project

Run the init command :

kedro mlflow init

you should see the following message:

'conf/local/mlflow.yml' successfully updated.

Note: you can create the configuration file in another kedro environment with the --env argument:

kedro mlflow init --env=<other-environment>

2.2. Initialize your Kedro project 7

https://kedro.readthedocs.io/en/latest/get_started/new_project.html

kedro-mlflow, Release 0.12.0

2.2.2.2 Declaring kedro-mlflow hooks

kedro_mlflow hooks implementations must be registered with Kedro. There are 2 ways of registering hooks.

Note that you must register the hook provided by kedro-mlflow (MlflowHook) to make the plugin work.

2.2.2.2.1 Declaring hooks through auto-discovery (for kedro>=0.16.4) [Default behaviour]

If you use kedro>=0.16.4, kedro-mlflow hooks are auto-registered automatically by default without any action
from your side. You can disable this behaviour in your settings.py file.

2.2.2.2.2 Declaring hooks statically in settings.py

If you have turned off plugin automatic registration, you can register its hooks manually by adding them to settings.
py:

<your_project>/src/<your_project>/settings.py
from kedro_mlflow.framework.hooks import MlflowHook

HOOKS = (MlflowHook(),)

2.3 Migration guide

This page explains how to migrate an existing kedro project to a more up to date kedro-mlflow versions with breaking
changes.

2.3.1 Migration from 0.10.x to 0.11.x

1. If you are registering your kedro_mlflow hooks manually (instead of using automatic registeringfrom plugin,
which is the default), change your settings.py

from this

<your_project>/src/<your_project>/settings.py
from kedro_mlflow.framework.hooks import MlflowHook

HOOKS = (MlflowPipelineHook(), MlflowNodeHook)

to this:

<your_project>/src/<your_project>/settings.py
from kedro_mlflow.framework.hooks import MlflowHook

HOOKS = (MlflowHook,)

2. The get_mlflow_config public method has been removed and the mlflow configuration is now automatically
stored in the mlflow attribute of KedroContext. if you need to access the mlflow configuration, you can use:

8 Chapter 2. Introduction

https://kedro.readthedocs.io/en/latest/hooks/introduction.html
https://kedro.readthedocs.io/en/latest/hooks/introduction.html#disable-auto-registered-plugins-hooks
https://kedro.readthedocs.io/en/latest/hooks/introduction.html#registering-your-hook-implementations-with-kedro
https://kedro.readthedocs.io/en/latest/hooks/introduction.html#registering-your-hook-implementations-with-kedro

kedro-mlflow, Release 0.12.0

from kedro.framework.session import KedroSession
from kedro.framework.startup import bootstrap_project

bootstrap_project(project_path)
with KedroSession.create(

project_path=project_path,
) as session:

context = session.load_context()
print(context.mlflow) # this is where mlflow configuration is stored

3. Remove the server.stores_environment_variables key from mlflow.yml. This is a dead key which was
unused. It will now throw an error if it is still written in mlflow.yml.

2.3.2 Migration from 0.9.x to 0.10.x

You must upgrade your kedro version to kedro==0.18.1 to use kedro_mlflow>=0.10.

2.3.3 Migration from 0.8.x to 0.9.x

There are no breaking change in this patch release except if you retrieve the mlflow configuration manually (e.g. in a
script or a jupyter notebok). The setup() method needs to be called with context:

from kedro.framework.context import load_context
from kedro_mlflow.config import get_mlflow_config

context = load_context(".")

the new best practice is just to remove these lines
mlflow_config = get_mlflow_config(context) # pass context instead of session
mlflow_config.setup(context) # pass context instead of session

This is not necessary: the mlflow config is automatically set up when the context is loaded, so unless you need to access
the config manually you can get rid of these 2 lines

2.3.4 Migration from 0.7.x to 0.8.x

• Update the mlflow.yml configuration file with kedro mlflow init --force command

• pipeline_ml_factory(pipeline_ml=<your-pipeline-ml>,...) (resp.
KedroPipelineModel(pipeline_ml=<your-pipeline-ml>, ...)) first argument is renamed
pipeline. Change the call to pipeline_ml_factory(pipeline=<your-pipeline-ml>) (resp.
KedroPipelineModel(pipeline=<your-pipeline-ml>, ...)).

• Change the call from pipeline_ml_factory(..., model_signature=<model-signature>,
conda_env=<conda-env>, model_name=<model_name>) to `` pipeline_ml_factory(. . . ,
log_model_kwargs=dict(signature=, conda_env=, artifact_path=<model_name>}). Notice that
the arguments are renamed to match mlflow's and they are passed as a dict in
log_model_kwargs`.

2.3. Migration guide 9

kedro-mlflow, Release 0.12.0

2.3.5 Migration from 0.6.x to 0.7.x

If you are working with kedro==0.17.0, update your template to kedro>=0.17.1.

2.3.6 Migration from 0.5.x to 0.6.x

kedro==0.16.x is no longer supported. You need to update your project template to kedro==0.17.0 template.

2.3.7 Migration from 0.4.x to 0.5.x

The only breaking change with the previous release is the format of KedroPipelineMLModel class. Hence, if you
saved a pipeline as a Mlflow Model with pipeline_ml_factory in kedro-mlflow==0.4.x, loading it (either
with MlflowModelTrackingDataset or mlflow.pyfunc.load_model) with kedro-mlflow==0.5.0 installed
will raise an error. You will need either to retrain the model or to load it with kedro-mlflow==0.4.x.

2.3.8 Migration from 0.4.0 to 0.4.1

There are no breaking change in this patch release except if you retrieve the mlflow configuration manually (e.g. in a
script or a jupyter notebok). You must add an extra call to the setup() method:

from kedro.framework.context import load_context
from kedro_mlflow.config import get_mlflow_config

context = load_context(".")
mlflow_config = get_mlflow_config(context)
mlflow_config.setup() # <-- add this line which did not exists in 0.4.0

2.3.9 Migration from 0.3.x to 0.4.x

2.3.9.1 Catalog entries

Replace the following entries:

2.3.9.2 Hooks

Hooks are now auto-registered if you use kedro>=0.16.4. You can remove the following entry from your run.py:

hooks = (MlflowPipelineHook(), MlflowNodeHook())

10 Chapter 2. Introduction

kedro-mlflow, Release 0.12.0

2.3.9.3 KedroPipelineModel

Be aware that if you have saved a pipeline as a mlflow model with pipeline_ml_factory, retraining this pipeline
with kedro-mlflow==0.4.0 will lead to a new behaviour. Let assume the name of your output in the DataCatalog
was predictions, the output of a registered model will be modified from:

{
predictions:

{
<your model-predictions>

}
}

to:

{
<your model-predictions>

}

Thus, parsing the predictions of this model must be updated accordingly.

2.3. Migration guide 11

kedro-mlflow, Release 0.12.0

12 Chapter 2. Introduction

CHAPTER

THREE

INTRODUCTION

3.1 Goal of the tutorial

This “Getting started” section demonstrates how to use some basic functionalities of kedro-mlflow in an end to end
example. It is supposed to be simple and self-contained and is partially redundant with other sections, but far from
complete.

The section only focuses on the versioning part and does not show the “machine learning framework” abilities of the
plugin. The goal is to give to a new user a quick glance to some capabiltiies so that he can decide whether the plugin
suits its needs or not. It is totally worth checking the other sections to have a much more complete overview of what
this plugin provides.

3.2 Example project

3.2.1 Install the plugin in a virtual environment

Create a conda environment and install kedro-mlflow (this will automatically install kedro>=0.16.0).

conda create -n km_example python=3.9 --yes
conda activate km_example
pip install kedro-mlflow==0.12.0

3.2.2 Install the toy project

For this end to end example, we will use the kedro starter with the iris dataset.

We use this project because:

• it covers most of the common use cases

• it is compatible with older version of Kedro so newcomers are used to it

• it is maintained by Kedro maintainers and therefore enforces some best practices.

13

https://docs.kedro.org/en/stable/starters/starters.html#official-kedro-starters
https://github.com/quantumblacklabs/kedro-starter-pandas-iris

kedro-mlflow, Release 0.12.0

3.2.2.1 Installation with kedro>=0.16.3

The default starter is now called “pandas-iris”. In a new console, enter:

kedro new --starter=pandas-iris

Answer Kedro Mlflow Example, km-example and km_example to the three setup questions of a new kedro project:

Project Name:
=============
Please enter a human readable name for your new project.
Spaces and punctuation are allowed.
[New Kedro Project]: Kedro Mlflow Example

Repository Name:
================
Please enter a directory name for your new project repository.
Alphanumeric characters, hyphens and underscores are allowed.
Lowercase is recommended.
[kedro-mlflow-example]: km-example

Python Package Name:
====================
Please enter a valid Python package name for your project package.
Alphanumeric characters and underscores are allowed.
Lowercase is recommended. Package name must start with a letter or underscore.
[kedro_mlflow_example]: km_example

3.2.2.2 Installation with kedro>=0.16.0, <=0.16.2

With older versions of Kedro, the starter option is not available, but this kedro new provides an “Include example”
question. Answer y to this question to get the same starter as above. In a new console, enter:

kedro new

Answer Kedro Mlflow Example, km-example, km_example and y to the four setup questions of a new kedro project:

Project Name:
=============
Please enter a human readable name for your new project.
Spaces and punctuation are allowed.
[New Kedro Project]: Kedro Mlflow Example

Repository Name:
================
Please enter a directory name for your new project repository.
Alphanumeric characters, hyphens and underscores are allowed.
Lowercase is recommended.
[kedro-mlflow-example]: km-example

Python Package Name:
====================
Please enter a valid Python package name for your project package.

(continues on next page)

14 Chapter 3. Introduction

kedro-mlflow, Release 0.12.0

(continued from previous page)

Alphanumeric characters and underscores are allowed.
Lowercase is recommended. Package name must start with a letter or underscore.
[kedro_mlflow_example]: km_example

Generate Example Pipeline:
==========================
Do you want to generate an example pipeline in your project?
Good for first-time users. (default=N)
[y/N]: y

3.2.3 Install dependencies

Move to the project directory:

cd km-example

Install the project dependencies (Warning: Do not use kedro install commands does not install the packages
in your activated environment):

pip install -r src/requirements.txt

3.3 First steps with the plugin

3.3.1 Initialize kedro-mlflow

First, you need to initialize your project and add the plugin-specific configuration file with this command:

kedro mlflow init

You will see the following message:

'conf/local/mlflow.yml' successfully updated.

The conf/local folder is updated and you can see the mlflow.yml file:

3.3. First steps with the plugin 15

https://github.com/quantumblacklabs/kedro/issues/589
https://github.com/quantumblacklabs/kedro/issues/589

kedro-mlflow, Release 0.12.0

Optional: If you have configured your own mlflow server, you can specify the tracking uri in the mlflow.yml (replace
the highlighted line below):

16 Chapter 3. Introduction

kedro-mlflow, Release 0.12.0

3.3.2 Run the pipeline

Open a new command and launch

kedro run

If the pipeline executes properly, you should see the following log:

2020-07-13 21:29:25,401 - kedro.io.data_catalog - INFO - Loading data from `example_iris_
→˓data` (CSVDataset)...
2020-07-13 21:29:25,562 - kedro.io.data_catalog - INFO - Loading data from␣
→˓`params:example_test_data_ratio` (MemoryDataset)...
2020-07-13 21:29:25,969 - kedro.pipeline.node - INFO - Running node: split_data([example_
→˓iris_data,params:example_test_data_ratio]) -> [example_test_x,example_test_y,example_
→˓train_x,example_train_y]
2020-07-13 21:29:26,053 - kedro.io.data_catalog - INFO - Saving data to `example_train_
→˓x` (MemoryDataset)...
2020-07-13 21:29:26,368 - kedro.io.data_catalog - INFO - Saving data to `example_train_
→˓y` (MemoryDataset)...
2020-07-13 21:29:26,484 - kedro.io.data_catalog - INFO - Saving data to `example_test_x`␣
→˓(MemoryDataset)...

(continues on next page)

3.3. First steps with the plugin 17

kedro-mlflow, Release 0.12.0

(continued from previous page)

2020-07-13 21:29:26,486 - kedro.io.data_catalog - INFO - Saving data to `example_test_y`␣
→˓(MemoryDataset)...
2020-07-13 21:29:26,610 - kedro.runner.sequential_runner - INFO - Completed 1 out of 4␣
→˓tasks
2020-07-13 21:29:26,850 - kedro.io.data_catalog - INFO - Loading data from `example_
→˓train_x` (MemoryDataset)...
2020-07-13 21:29:26,851 - kedro.io.data_catalog - INFO - Loading data from `example_
→˓train_y` (MemoryDataset)...
2020-07-13 21:29:26,965 - kedro.io.data_catalog - INFO - Loading data from `parameters`␣
→˓(MemoryDataset)...
2020-07-13 21:29:26,972 - kedro.pipeline.node - INFO - Running node: train_
→˓model([example_train_x,example_train_y,parameters]) -> [example_model]
2020-07-13 21:29:27,756 - kedro.io.data_catalog - INFO - Saving data to `example_model`␣
→˓(MemoryDataset)...
2020-07-13 21:29:27,763 - kedro.runner.sequential_runner - INFO - Completed 2 out of 4␣
→˓tasks
2020-07-13 21:29:28,141 - kedro.io.data_catalog - INFO - Loading data from `example_
→˓model` (MemoryDataset)...
2020-07-13 21:29:28,161 - kedro.io.data_catalog - INFO - Loading data from `example_test_
→˓x` (MemoryDataset)...
2020-07-13 21:29:28,670 - kedro.pipeline.node - INFO - Running node: predict([example_
→˓model,example_test_x]) -> [example_predictions]
2020-07-13 21:29:29,002 - kedro.io.data_catalog - INFO - Saving data to `example_
→˓predictions` (MemoryDataset)...
2020-07-13 21:29:29,248 - kedro.runner.sequential_runner - INFO - Completed 3 out of 4␣
→˓tasks
2020-07-13 21:29:29,433 - kedro.io.data_catalog - INFO - Loading data from `example_
→˓predictions` (MemoryDataset)...
2020-07-13 21:29:29,730 - kedro.io.data_catalog - INFO - Loading data from `example_test_
→˓y` (MemoryDataset)...
2020-07-13 21:29:29,911 - kedro.pipeline.node - INFO - Running node: report_
→˓accuracy([example_predictions,example_test_y]) -> None
2020-07-13 21:29:30,056 - km_example.pipelines.data_science.nodes - INFO - Model␣
→˓accuracy on test set: 100.00%
2020-07-13 21:29:30,214 - kedro.runner.sequential_runner - INFO - Completed 4 out of 4␣
→˓tasks
2020-07-13 21:29:30,372 - kedro.runner.sequential_runner - INFO - Pipeline execution␣
→˓completed successfully.

Since we have kept the default value of the mlflow.yml, the tracking uri (the place where runs are recorded) is a local
mlruns folder which has just been created with the execution:

18 Chapter 3. Introduction

kedro-mlflow, Release 0.12.0

3.3. First steps with the plugin 19

kedro-mlflow, Release 0.12.0

3.3.3 Open the UI

Launch the ui:

kedro mlflow ui

And open the following adress in your favorite browser

http://localhost:5000/

Click now on the last run executed, you will land on this page:

20 Chapter 3. Introduction

kedro-mlflow, Release 0.12.0

3.3. First steps with the plugin 21

kedro-mlflow, Release 0.12.0

3.3.3.1 Parameters versioning

Note that the parameters have been recorded automagically. Here, two parameters format are used:

1. The parameter example_test_data_ratio, which is called in the pipeline.py file with the params: prefix

2. the dictionary of all parameters in parameters.yml which is a reserved key word in Kedro. Note that this is
bad practice because you cannot know which parameters are really used inside the function called. Another
problem is that it can generate too long parameters names and lead to mlflow errors.

You can see that these are effectively the registered parameters in the pipeline with the kedro-viz plugin:

pip install kedro-viz
kedro viz

Open your browser at the following adress:

You should see the following graph:

22 Chapter 3. Introduction

kedro-mlflow, Release 0.12.0

which indicates clearly which parameters are logged (in the red boxes with the “parameter” icon).

3.3. First steps with the plugin 23

kedro-mlflow, Release 0.12.0

3.3.3.2 Journal information

The informations provided by the Kedro’s Journal are also recorded as tags in the mlflow ui in order to make
reproducible. In particular, the exact command used for running the pipeline and the kedro version used are stored.

3.3.3.3 Artifacts

With this run, artifacts are empty. This is expected: mlflow does not know what it should log and it will not log all
your data by default. However, you want to save your model (at least) or your run is likely useless!

First, open the catalog.yml file which should like this:

This is a data set used by the "Hello World" example pipeline provided with the project
template. Please feel free to remove it once you remove the example pipeline.

example_iris_data:
type: pandas.CSVDataset
filepath: data/01_raw/iris.csv

And persist the model as a pickle with the MlflowArtifactDataset class:

This is a data set used by the "Hello World" example pipeline provided with the project
template. Please feel free to remove it once you remove the example pipeline.

example_iris_data:
type: pandas.CSVDataset
filepath: data/01_raw/iris.csv

example_model:
type: kedro_mlflow.io.artifacts.MlflowArtifactDataset
dataset:
type: pickle.PickleDataset
filepath: data/06_models/trained_model.pkl

Rerun the pipeline (with kedro run), and reopen the UI. Select the last run and see that the file was uploaded:

This works for any type of file (including images with MatplotlibWriter) and the UI even offers a preview for png
and csv, which is really convenient to compare runs.

Note: Mlflow offers specific logging for machine learning models that may be better suited for your use case, see
MlflowModelTrackingDataset

24 Chapter 3. Introduction

kedro-mlflow, Release 0.12.0

3.3.4 Going further

Above vanilla example is just the beginning of your experience with kedro-mlflow. Check out the next sections to
see how kedro-mlflow:

• offers advanced capabilities for machine learning versioning

• can help to create standardize pipelines for deployment in production

3.3. First steps with the plugin 25

kedro-mlflow, Release 0.12.0

26 Chapter 3. Introduction

CHAPTER

FOUR

INTRODUCTION

4.1 Configure mlflow inside your project

We assume in this section that you have installed kedro-mlflow in your virtual environment and you have configured
your project with a mlflow.yml configuration file and hooks declaration.

4.1.1 Context: mlflow tracking under the hood

Mlflow is composed of four modules which are described in the introduction section. The main module is “tracking”.
The goal of this module is to keep track of every varying parameters across different code execution (parameters,
metrics and artifacts). The following schema describes how this modules operates under the hood:

Basically, this schema shows that mlflow separates WHERE the artifacts are logged from HOW they are logged inside
your code. You need to setup your mlflow tracking server separately from your code, and then each logging will send
a request to the tracking server to store the elements you want to track in the appropriate location. The advantage of
such a setup are numerous:

• once the mlflow tracking server is setup, there is single parameter to set before logging which is the tracking
server uri. This makes configuration very easy in your project.

• since the different storage locations are well identified, it is easy to define custom solutions for each of them.
They can be database or even local folders.

27

https://mlflow.org/docs/latest/tracking.html#mlflow-tracking-servers

kedro-mlflow, Release 0.12.0

The rationale behind the separation of the backend store and the artifacts store is that artifacts can be very big and are
duplicated across runs, so they need a special management with extensible storage. This is typically cloud storage like
AWS S3 or Azure Blob storage.

4.1.2 The mlflow.yml file

The mlflow.yml file contains all configuration you can pass either to kedro or mlflow through the plugin. Note that
you can duplicate mlflow.yml file in as many environments (i.e. conf/ folders) as you need. To create a mlflow.yml
file in a kedro configuration environment, use kedro mlflow init --env=<your-env>.

Note: If no mlflow.yml file is found in the environment, kedro-mlflow will still work and use all mlflow.yml
default values as configuration.

Important: If the kedro run is started in a process where a mlflow run is already active, kedro-mlflow will ignore
all the configuration in mlflow.yml and use the active run. The mlflow run will NOT be closed at the end of the kedro
run. This enable using kedro-mlflow with an orchestrator (e.g airflow, AzureML. . .) which starts the mlflow run and
configuraiton itself.

4.1.2.1 Configure the tracking server

4.1.2.1.1 Configure the tracking and registry uri

kedro-mlflow needs the tracking uri of your mlflow tracking server to operate properly. The mlflow.yml file must
have the mlflow_tracking_uri key with a valid mlflow_tracking_uri associated value. The mlflow.yml default
have this keys set to null. This means that it will look for a MLFLOW_TRACKING_URI environment variable, and if it
is not set, it will create a mlruns folder locally at the root of your kedro project. This enables you to use the plugin
without any setup of a mlflow tracking server.

Unlike mlflow, kedro-mlflow allows the mlflow_tracking_uri to be a relative path. It will convert it to an absolute
uri automatically.

server:
mlflow_tracking_uri: mlruns

This is the only mandatory key in the mlflow.yml file, but there are many others described hereafter that provide
fine-grained control on your mlflow setup.

You can also specify the registry uri:

server:
mlflow_registry_uri: sqlite:///path/to/registry.db

Note: Unlike the mlflow_tracking_uri, the mlflow_registry_uri must be an absolute path prefixed with the
database dialect of your database, likely sqlite:/// for a local database.

28 Chapter 4. Introduction

https://mlflow.org/docs/latest/tracking.html#id10
https://mlflow.org/docs/latest/tracking.html#id10
https://mlflow.org/docs/latest/tracking.html#where-runs-are-recorded
https://mlflow.org/docs/latest/tracking.html#backend-stores

kedro-mlflow, Release 0.12.0

4.1.2.1.2 Configure the credentials

4.1.2.1.2.1 Default credentials with environment variables

You can also specify some environment variables needed by mlflow (e.g AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY) in the credentials and specify them in the mlflow.yml. Any key specified will be
automatically exported as environment variables.

Your credentials.yml will look as follows:

my_mlflow_credentials:
AWS_ACCESS_KEY_ID: <your-key>
AWS_SECRET_ACCESS_KEY: <your-secret-key>

and your can supply the credentials key of the mlflow.yml:

server:
credentials: my_mlflow_credentials

Note: For security reasons, the credentials will not be accessible within KedroMlflowConfig objects. They will be
exported as environment variables on the fly when running the pipeline.

4.1.2.1.2.2 Authentication with expiring tokens

Mlflow can be deployed with OAuth2.0. authentication method : in this case, secured MLflow instances require HTTP
requests to have the Authorization: Bearer <token> header. Mlflow exposes a RequestHeaderProvider ab-
stract class to mange this use case. If you need kedro-mlflow to use a custom header provider, you can configure your
mlflow.yml as follow:

mlflow.yml
server:

request_header_provider:
type: path.to.your.class.CustomRequestHeaderProvider
pass_context: True # if you want to pass context. it must be named ``kedro_

→˓context`` in the ``__init__`` method of your custom ``request_header_provider``)
init_kwargs:

my_kwarg: 1

This will automatically register in the mlflow entrypoint the CustomRequestHeaderProvider(kedro_context=<kedro-context>,
my_kwarg=1) request header when running a kedro pipeline.

4.1. Configure mlflow inside your project 29

https://github.com/mlflow/mlflow/blob/master/mlflow/tracking/request_header/abstract_request_header_provider.py#L4
https://github.com/mlflow/mlflow/blob/master/mlflow/tracking/request_header/abstract_request_header_provider.py#L4

kedro-mlflow, Release 0.12.0

4.1.2.2 Deactivate tracking under conditions

kedro-mlflow logs every run parameters in mlflow. You may want to avoid tracking some runs (for instance while
debugging to avoid polluting your mlflow database, or because some pipelines are not ml related and it does not makes
sense to log their parameters).

You can specify the name of the pipelines you want to turn off:

tracking:
disable_tracking:
pipelines:
- <pipeline-name>

Notice that it will stop autologging parameters but also any Mlflow<Artifact/Metrics/ModelTracking>Dataset
you may have in these deactivated pipelines.

4.1.2.3 Configure mlflow experiment

Mlflow enable the user to create “experiments” to organize his work. The different experiments will be visible on the left
panel of the mlflow user interface. You can create an experiment through the mlflow.yml file with the experiment
key:

tracking:
experiment:
name: <your-experiment-name> # by default, the name of your python package in your␣

→˓kedro project
restore_if_deleted: True # if the experiment`name` was previously deleted experiment,

→˓ should we restore it?

Note that by default, mlflow crashes if you try to start a run while you have not created the experiment first.
kedro-mlflow has a create key (True by default) which forces the creation of the experiment if it does not ex-
ist. Set it to False to match mlflow default value.

4.1.2.4 Configure the run

When you launch a new kedro run, kedro-mlflow instantiates an underlying mlflow run through the hooks. By
default, we assume the user want to launch each kedro run in separated mlflow run to keep a one to one relationship
between kedro runs and mlflow runs. However, one may need to continue an existing mlflow run (for instance, because
you resume the kedro run from a later starting point of your pipeline).

The mlflow.yml accepts the following keys:

tracking:
run:
id: null # if `id` is None, a new run will be created
name: null # if `name` is None, pipeline name will be used for the run name
nested: True # # if `nested` is False, you won't be able to launch sub-runs inside␣

→˓your nodes

• If you want to continue to log in an existing mlflow run, write its id in the id key.

• If you want to enable the creation of sub runs inside your nodes (for instance, for model comparison or hyperpa-
rameter tuning), set the nested key to True

30 Chapter 4. Introduction

kedro-mlflow, Release 0.12.0

4.1.2.5 Extra tracking configuration

You may sometimes encounter an mlflow failure “parameters too long”. Mlflow has indeed an upper limit on the length
of the parameters you can store in it. This is a very common pattern when you log a full dictionary in mlflow (e.g.
the reserved keyword parameters in kedro, or a dictionnary conaining all the hyperparameters you want to tune for a
given model). You can configure the kedro-mlflow hooks to overcome this limitation by “flattening” automatically
dictionaries in a kedro run.

The mlflow.yml accepts the following keys:

tracking:
params:
dict_params:
flatten: False # if True, parameter which are dictionary will be splitted in␣

→˓multiple parameters when logged in mlflow, one for each key.
recursive: True # Should the dictionary flattening be applied recursively (i.e␣

→˓for nested dictionaries)? Not use if `flatten_dict_params` is False.
sep: "." # In case of recursive flattening, what separator should be used between␣

→˓the keys? E.g. {hyperaparam1: {p1:1, p2:2}} will be logged as hyperaparam1.p1 and␣
→˓hyperaparam1.p2 in mlflow.
long_params_strategy: fail # One of ["fail", "tag", "truncate"] If a parameter is␣

→˓above mlflow limit (currently 250), what should kedro-mlflow do? -> fail, set as a tag␣
→˓instead of a parameter, or truncate it to its 250 first letters?

If you set flatten to True, each key of the dictionary will be logged as a mlflow parameters, instead of a single
parameter for the whole dictionary. Note that it is recommended to facilitate run comparison.

The long_parameters_strategy key enable to define different way to handle parameters over the mlflow limit
(currently 250 characters):

• fail: no special management of characters above the limit. They will be send to mlflow and as a result, in some
backend they will be stored normally (e.g. for FileStore backend) and for some others logging will fail.

• truncate: All parameters above the limit will be automatically truncated to a 250-character length to make sure
logging will pass for all mlflow backend.

• tag: Any parameter above the limit will be registered as a tag instead of a parameter as it seems to be the
recommended mlflow way to deal with long parameters.

4.1.2.6 Configure the user interface

You can configure mlflow user interface default params inside the mlflow.yml:

ui:
port: null # the port to use for the ui. Find a free port if null.
host: null # the host to use for the ui. Default to "localhost" if null.

The port and host parameters set in this configuration will be used by default if you use kedro mlflow ui command
(instead of mlflow ui) to open the user interface. Note that the kedro mlflow ui command will also use the
mlflow_tracking_uri key set inside mlflow.yml.

4.1. Configure mlflow inside your project 31

https://github.com/mlflow/mlflow/issues/2814#issuecomment-628284425
https://github.com/mlflow/mlflow/issues/1976

kedro-mlflow, Release 0.12.0

4.2 Parameters versioning

4.2.1 Automatic parameters versioning

Parameters versioning is automatic when the MlflowNodeHook is added to the hook list of the ProjectContext.
The mlflow.yml configuration file has a parameter called flatten_dict_params which enables to log as distinct
parameters the (key, value) pairs of a ```Dict`` parameter.

You do not need any additional configuration to benefit from parameters versioning.

4.2.2 How does MlflowNodeHook operates under the hood?

The medium post which introduces hooks explains in detail the differents execution steps Kedro executes when the
user calls the kedro run command.

The MlflowNodeHook registers the parameters before each node (entry point number 3 on above picture) by calling
mlflow.log_parameter(param_name, param_value) on each parameters of the node.

4.2.3 Frequently Asked Questions

4.2.3.1 Will parameters be recorded if the pipeline fails during execution?

The parameters are registered node by node (and not in a single batch at the beginning of the execution). If the pipeline
fails in the middle of its execution, the parameters of the nodes who have been run will be recorded, but not the
parameters of non executed nodes.

32 Chapter 4. Introduction

https://kedro-mlflow.readthedocs.io/en/latest/source/02_installation/02_setup.html#declaring-kedro-mlflow-hooks
https://medium.com/quantumblack/introducing-kedro-hooks-fd5bc4c03ff5

kedro-mlflow, Release 0.12.0

4.2.3.2 How are parameters detected by the plugin?

The hook detects parameters through their prefix params: or the value parameters. These are the reserved
keywords used by Kedro to define parameters in the pipeline.py file(s).

4.3 Versioning Kedro DataSets

4.3.1 What is artifact tracking?

Mlflow defines artifacts as “any data a user may want to track during code execution”. This includes, but is not limited
to:

• data needed for the model (e.g encoders, vectorizer, the machine learning model itself. . .)

• graphs (e.g. ROC or PR curve, importance variables, margins, confusion matrix. . .)

Artifacts are a very flexible and convenient way to “bind” any data type to your code execution. Mlflow has a two-step
process for such binding:

1. Persist the data locally in the desired file format

2. Upload the data to the artifact store

4.3.2 How to version data in a kedro project?

kedro-mlflow introduces a new AbstractDataset called MlflowArtifactDataset. It is a wrapper for any
AbstractDataset which decorates the underlying dataset save method and logs the file automatically in mlflow
as an artifact each time the save method is called.

Since it is an AbstractDataset, it can be used with the YAML API. Assume that you have the following entry in the
catalog.yml:

my_dataset_to_version:
type: pandas.CSVDataset
filepath: /path/to/a/destination/file.csv

You can change it to:

my_dataset_to_version:
type: kedro_mlflow.io.artifacts.MlflowArtifactDataset
dataset:

type: pandas.CSVDataset # or any valid kedro DataSet
filepath: /path/to/a/LOCAL/destination/file.csv # must be a local file, wherever␣

→˓you want to log the data in the end

and this dataset will be automatically versioned in each pipeline execution.

4.3. Versioning Kedro DataSets 33

https://kedro.readthedocs.io/en/stable/03_tutorial/04_create_pipelines.html?highlight=params%3A#working-with-multiple-pipelines
https://kedro.readthedocs.io/en/stable/03_tutorial/04_create_pipelines.html?highlight=params%3A#working-with-multiple-pipelines

kedro-mlflow, Release 0.12.0

4.3.3 Frequently asked questions

4.3.3.1 Can I pass extra parameters to the MlflowArtifactDataset for finer control?

The MlflowArtifactDataset takes a dataset argument which is a python dictionary passed to the __init__
method of the dataset declared in type. It means that you can pass any argument accepted by the underlying dataset
in this dictionary. If you want to pass load_args and save_args in the previous example, add them in the dataset
argument:

my_dataset_to_version:
type: kedro_mlflow.io.artifacts.MlflowArtifactDataset
dataset:

type: pandas.CSVDataset # or any valid kedro DataSet
filepath: /path/to/a/local/destination/file.csv
load_args:

sep: ;
save_args:

sep: ;
... any other valid arguments for dataset

4.3.3.2 Can I use the MlflowArtifactDataset in interactive mode?

Like all Kedro AbstractDataset, MlflowArtifactDataset is callable in the python API:

from kedro_mlflow.io.artifacts import MlflowArtifactDataset
from kedro_datasets.pandas import CSVDataset

csv_dataset = MlflowArtifactDataSet(
dataset={

"type": CSVDataset, # either a string "pandas.CSVDataset" or the class
"filepath": r"/path/to/a/local/destination/file.csv",

}
)
csv_dataset.save(data=pd.DataFrame({"a": [1, 2], "b": [3, 4]}))

4.3.3.3 How do I upload an artifact to a non local destination (e.g. an S3 or blog storage)?

The location where artifact will be stored does not depends of the logging function but rather on the artifact store
specified when configuring the mlflow server. Read mlflow documentation to see:

• how to configure a mlflow tracking server

• how to configure an artifact store with cloud storage.

Setting the mlflow_tracking_uri key of mlflow.yml to the url of this server is the only additional configuration
you need to send your datasets to this remote server. Note that you still need to specify a local path for the underlying
dataset, mlflow will take care of the upload to the server by itself.

You can refer to this issue for further details.

34 Chapter 4. Introduction

https://www.mlflow.org/docs/latest/tracking.html#mlflow-tracking-servers
https://www.mlflow.org/docs/latest/tracking.html#id10
https://github.com/Galileo-Galilei/kedro-mlflow/issues/15

kedro-mlflow, Release 0.12.0

4.3.3.4 Can I log an artifact in a specific run?

The MlflowArtifactDataset has an extra attribute run_id which specifies the run you will log the artifact in. Be
cautious, because this argument will take precedence over the current run when you call kedro run, causing the
artifact to be logged in another run that all the other data of the run.

my_dataset_to_version:
type: kedro_mlflow.io.artifacts.MlflowArtifactDataset
dataset:

type: pandas.CSVDataset # or any valid kedro DataSet
filepath: /path/to/a/local/destination/file.csv # must be a local filepath, no␣

→˓matter what is your actual mlflow storage (S3 or other)
run_id: 13245678910111213 # a valid mlflow run to log in. If None, default to␣

→˓active run

4.3.3.5 Can I reload an artifact from an existing run to use it in another run ?

You may want to reuse th artifact of a previous run to reuse it in another one, e.g. to continue training from a
pretrained model, or to select the best model among several runs created during an hyperparamter tuning. The
MlflowArtifactDataset has an extra attribute run_id you can use to specify from which run you will load the
artifact from. Be cautious, because:

• this argument will take precedence over the current run** when you call kedro run, causing the artifact to be
loaded from another run that all the other data of the run

• the artifact will be downloaded and erase the existing file at your local filepath

my_dataset_to_reload:
type: kedro_mlflow.io.artifacts.MlflowArtifactDataset
dataset:

type: pandas.CSVDataset # or any valid kedro DataSet
filepath: /path/to/a/local/destination/file.csv # must be a local filepath, no␣

→˓matter what is your actual mlflow storage (S3 or other)
run_id: 13245678910111213 # a valid mlflow run with the existing artifact. It must␣

→˓be named "file.csv"

4.3.3.6 Can I create a remote folder/subfolders architecture to organize the artifacts?

The MlflowArtifactDataset has an extra argument artifact_path which specifies a remote subfolder where the
artifact will be logged. It must be a relative path.

With below example, the artifact will be logged in mlflow within a reporting folder.

my_dataset_to_version:
type: kedro_mlflow.io.artifacts.MlflowArtifactDataset
dataset:

type: pandas.CSVDataset # or any valid kedro DataSet
filepath: /path/to/a/local/destination/file.csv

artifact_path: reporting # relative path where the remote artifact must be stored.␣
→˓if None, saved in root folder.

4.3. Versioning Kedro DataSets 35

kedro-mlflow, Release 0.12.0

4.4 Version model

4.4.1 What is model tracking?

MLflow allows to serialize and deserialize models to a common format, track those models in MLflow Tracking and
manage them using MLflow Model Registry. Many popular Machine / Deep Learning frameworks have built-in support
through what MLflow calls flavors. Even if there is no flavor for your framework of choice, it is easy to create your
own flavor and integrate it with MLflow.

4.4.2 How to track models using MLflow in Kedro project?

kedro-mlflow introduces two new DataSet types that can be used in DataCatalog called
MlflowModelTrackingDataset and MlflowModelLocalFileSystemDataset. The two have very similar
API, except that:

• the MlflowModelTrackingDataset is used to load from and save to from the mlflow artifact store. It uses
optional run_id argument to load and save from a given run_id which must exists in the mlflow server you are
logging to.

• the MlflowModelLocalFileSystemDataset is used to load from and save to a given path. It uses the standard
filepath argument in the constructor of Kedro DataSets. Note that it does not log in mlflow.

Note: If you use MlflowModelTrackingDataset, it will be saved during training in your current run. However, you
will need to specify the run id to predict with (since it is not persisted locally, it will not pick the latest model by default).
You may prefer to combine MlflowModelLocalFileSystemDataset and MlflowArtifactDataset to make persist
it both locally and remotely, see further.

Suppose you would like to register a scikit-learn model of your DataCatalog in mlflow, you can use the following
yaml API:

my_sklearn_model:
type: kedro_mlflow.io.models.MlflowModelTrackingDataset
flavor: mlflow.sklearn

More informations on available parameters are available in the dedicated section.

You are now able to use my_sklearn_model in your nodes. Since this model is registered in mlflow, you can also
leverage the mlflow model serving abilities or predicting on batch abilities, as well as the mlflow models registry to
manage the lifecycle of this model.

4.4.3 Frequently asked questions?

4.4.3.1 How is it working under the hood?

For MlflowModelTrackingDataset
During save, a model object from node output is logged to mlflow using log_model function of the specified flavor.
It is logged in the run_id run if specified and if there is no active run, else in the currently active mlflow run. If the
run_id is specified and there is an active run, the saving operation will fail. Consequently it will never be possible
to save in a specific mlflow run_id if you launch a pipeline with the kedro run command because the MlflowHook
creates a new run before each pipeline run.

During load, the model is retrieved from the run_id if specified, else it is retrieved from the mlflow active run. If there
is no mlflow active run, the loading fails. This will never happen if you are using the kedro run command, because
the MlflowHook creates a new run before each pipeline run.

36 Chapter 4. Introduction

https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors
https://www.mlflow.org/docs/latest/models.html#custom-python-models
https://www.mlflow.org/docs/latest/models.html#custom-python-models
https://www.mlflow.org/docs/latest/cli.html#mlflow-models-serve
https://www.mlflow.org/docs/latest/cli.html#mlflow-models-predict
https://www.mlflow.org/docs/latest/model-registry.html

kedro-mlflow, Release 0.12.0

For MlflowModelLocalFileSystemDataset
During save, a model object from node output is saved locally under specified filepath using save_model function
of the specified flavor.

When model is loaded, the latest version stored locally is read using load_model function of the specified flavor.
You can also load a model from a specific kedro run by specifying the version argument to the constructor.

4.4.3.2 How can I track a custom MLflow model flavor?

To track a custom MLflow model flavor you need to set the flavor parameter to import the module of your custom
flavor and to specify a pyfunc workflow which can be set either to python_model or loader_module. The former
is the more high level and user friendly and is recommend by mlflow while the latter offer more control. We haven’t
tested the integration in kedro-mlflow of this second workflow extensively, and it should be used with caution.

my_custom_model:
type: kedro_mlflow.io.models.MlflowModelTrackingDataset
flavor: my_package.custom_mlflow_flavor
pyfunc_workflow: python_model # or loader_module

4.4.3.3 How can I save model locally and log it in MLflow in one step?

If you want to save your model both locally and remotely within the same run, you can leverage
MlflowArtifactDataset:

sklearn_model:
type: kedro_mlflow.io.artifacts.MlflowArtifactDataset
dataset:

type: kedro_mlflow.io.models.MlflowModelLocalFileSystemDataset
flavor: mlflow.sklearn
filepath: data/06_models/sklearn_model

This might be useful if you want to always read the lastest model saved locally and log it to MLflow each time the new
model is being trained for tracking purpose.

4.5 Version metrics

4.5.1 What is metric tracking?

MLflow defines a metric as “a (key, value) pair, where the value is numeric”. Each metric can be updated throughout
the course of the run (for example, to track how your model’s loss function is converging), and MLflow records and
lets you visualize the metric’s full history”.

4.5. Version metrics 37

https://mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#pyfunc-create-custom-workflows
https://mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#which-workflow-is-right-for-my-use-case

kedro-mlflow, Release 0.12.0

4.5.2 How to version metrics in a kedro project?

kedro-mlflow introduces 3 AbstractDataset to manage metrics:

• MlflowMetricDataset which can log a float as a metric

• MlflowMetricHistoryDataset which can log the evolution over time of a given metric, e.g. a list or a dict of
float.

• MlflowMetricsHistoryDataset. It is a wrapper around a dictionary with metrics which is returned by node
and log metrics in MLflow.

4.5.2.1 Saving a single float as a metric with MlflowMetricDataset

The MlflowMetricDataset is an AbstractDataset which enable to save or load a float as a mlflow metric. You
must specify the key (i.e. the name to display in mlflow) when creating the dataset. Somes examples follow:

• The most basic usage is to create the dataset and save a a value:

from kedro_mlflow.io.metrics import MlflowMetricDataset

metric_ds = MlflowMetricDataset(key="my_metric")
with mlflow.start_run():

metric_ds.save(
0.3

) # create a "my_metric=0.3" value in the "metric" field in mlflow UI

Warning: Unlike mlflow default behaviour, if there is no active run, no run is created.

• You can also specify a run_id instead of logging in the active run:

from kedro_mlflow.io.metrics import MlflowMetricDataset

metric_ds = MlflowMetricDataset(key="my_metric", run_id="123456789")
with mlflow.start_run():

metric_ds.save(
0.3

) # create a "my_metric=0.3" value in the "metric" field of the run 123456789

It is also possible to pass load_args and save_args to control which step should be logged (in case you have logged
several step for the same metric.) save_args accepts a mode key which can be set to overwrite (mlflow default) or
append. In append mode, if no step is specified, saving the metric will “bump” the last existing step to create a linear
history. This is very useful if you have a monitoring pipeline which calculates a metric frequently to check the
performance of a deployed model.

from kedro_mlflow.io.metrics import MlflowMetricDataset

metric_ds = MlflowMetricDataset(
key="my_metric", load_args={"step": 1}, save_args={"mode": "append"}

)

with mlflow.start_run():
metric_ds.save(0) # step 0 stored for "my_metric"
metric_ds.save(0.1) # step 1 stored for "my_metric"

(continues on next page)

38 Chapter 4. Introduction

kedro-mlflow, Release 0.12.0

(continued from previous page)

metric_ds.save(0.2) # step 2 stored for "my_metric"

my_metric = metric_ds.load() # value=0.1 (step number 1)

Since it is an AbstractDataset, it can be used with the YAML API in your catalog.yml, e.g. :

my_model_metric:
type: kedro_mlflow.io.metrics.MlflowMetricDataset
run_id: 123456 # OPTIONAL, you should likely let it empty to log in the current run
key: my_awesome_name # OPTIONAL: if not provided, the dataset name will be sued␣

→˓(here "my_model_metric")
load_args:

step: ... # OPTIONAL: likely not provided, unless you have a very good reason to␣
→˓do so
save_args:

step: ... # OPTIONAL: likely not provided, unless you have a very good reason to␣
→˓do so

mode: append # OPTIONAL: likely better than the default "overwrite". Will be␣
→˓ignored if "step" is provided.

4.5.2.2 Saving the evolution of a metric during training with MlflowMetricHistoryDataset

The MlflowMetricDataset is an AbstractDataset which enable to save or load the evolutionf of a metric with
various formats. You must specify the key (i.e. the name to display in mlflow) when creating the dataset. Somes
examples follow:

It enables logging either:

• a list of int as a metric with incremental step, e.g [0.1,0.2,0.3] with mode=list for either save_args or
load_args

from kedro_mlflow.io.metrics import MlflowMetricHistoryDataset

metric_history_ds = MlflowMetricDataset(key="my_metric", save_args={"mode": "list"})

with mlflow.start_run():
metric_history_ds.save([0.1, 0.2, 0.3]) # will be logged with incremental steps

• a dict of {step: value} as a metric:

from kedro_mlflow.io.metrics import MlflowMetricHistoryDataset

metric_history_ds = MlflowMetricDataset(key="my_metric", save_args={"mode": "dict"})

with mlflow.start_run():
metric_history_ds.save(

{0: 0.1, 1: 0.2, 2: 0.3}
) # will be logged with incremental steps

• a list of dict [{log_metric_arg: value}] as a metric, e.g:

from kedro_mlflow.io.metrics import MlflowMetricHistoryDataset

(continues on next page)

4.5. Version metrics 39

kedro-mlflow, Release 0.12.0

(continued from previous page)

metric_history_ds = MlflowMetricDataset(key="my_metric", save_args={"mode": "history"})

with mlflow.start_run():
metric_history_ds.save(

[
{"step": 0, "value": 0.1, "timestamp": 1345545},
{"step": 1, "value": 0.2, "timestamp": 1345546},
{"step": 2, "value": 0.3, "timestamp": 1345547},

]
)

You can combine the different mode for save and load, e.g:

from kedro_mlflow.io.metrics import MlflowMetricHistoryDataset

metric_history_ds = MlflowMetricDataset(
key="my_metric", save_args={"mode": "dict"}, save_args={"mode": "list"}

)

with mlflow.start_run():
metric_history_ds.save(

{0: 0.1, 1: 0.2, 2: 0.3}
) # will be logged with incremental steps

metric_history_ds.load() # return [0.1,0.2,0.3]

As usual, since it is an AbstractDataset, it can be used with the YAML API in your catalog.yml, and in this case,
the key argument is optional:

my_model_metric:
type: kedro_mlflow.io.metrics.MlflowMetricHistoryDataset
run_id: 123456 # OPTIONAL, you should likely let it empty to log in the current run
key: my_awesome_name # OPTIONAL: if not provided, the dataset name will be used␣

→˓(here "my_model_metric")
load_args:

mode: ... # OPTIONAL: "list" by default, one of {"list", "dict", "history"}
save_args:

mode: ... # OPTIONAL: "list" by default, one of {"list", "dict", "history"}

4.5.2.3 Saving several metrics with their entire history with MlflowMetricsHistoryDataset

Since it is an AbstractDataset, it can be used with the YAML API. You can define it in your catalog.yml as:

my_model_metrics:
type: kedro_mlflow.io.metrics.MlflowMetricsHistoryDataset

You can provide a prefix key, which is useful in situations like when you have multiple nodes producing metrics with
the same names which you want to distinguish. If you are using the v, it will handle that automatically for you by giving
as prefix metrics data set name. In the example above the prefix would be my_model_metrics.

Let’s look at an example with custom prefix:

40 Chapter 4. Introduction

kedro-mlflow, Release 0.12.0

my_model_metrics:
type: kedro_mlflow.io.metrics.MlflowMetricsHistoryDataset
prefix: foo

4.5.3 How to return metrics from a node?

Let assume that you have node which doesn’t have any inputs and returns dictionary with metrics to log:

def metrics_node() -> Dict[str, Union[float, List[float]]]:
return {

"metric1": {"value": 1.1, "step": 1},
"metric2": [{"value": 1.1, "step": 1}, {"value": 1.2, "step": 2}],

}

As you can see above, kedro_mlflow.io.metrics.MlflowMetricsHistoryDataset can take metrics as:

• Dict[str, key]

• List[Dict[str, key]]

To store metrics we need to define metrics dataset in Kedro Catalog:

my_model_metrics:
type: kedro_mlflow.io.metrics.MlflowMetricsHistoryDataset

Within a kedro run, the MlflowHook will automatically prefix the metrics datasets with their name in the cata-
log. In our example, the metrics will be stored in Mlflow with the following keys: my_model_metrics.metric1,
my_model_metrics.metric2.

It is also prossible to provide a prefix manually:

my_model_metrics:
type: kedro_mlflow.io.metrics.MlflowMetricsHistoryDataset
prefix: foo

which would result in metrics logged as foo.metric1 and foo.metric2.

As any entry in the catalog, the metrics data set must be defined in a Kedro pipeline:

def create_pipeline() -> Pipeline:
return Pipeline(

node(
func=metrics_node,
inputs=None,
outputs="my_model_metrics",
name="log_metrics",

)
)

4.5. Version metrics 41

kedro-mlflow, Release 0.12.0

4.6 Opening the UI

4.6.1 The mlflow user interface

Mlflow offers a user interface (UI) that enable to browse the run history.

4.6.2 The kedro-mlflow helper

When you use a local storage for kedro mlflow, you can call a mlflow cli command to launch the UI if you do not have
a mlflow tracking server configured.

To ensure this UI is linked to the tracking uri specified configuration, kedro-mlflow offers the following command:

kedro mlflow ui

which is a wrapper for kedro ui command with the tracking uri (as well as the port and host) specified the mlflow.
yml file.

Opens http://localhost:5000 in your browser to see the UI after calling previous command. If your
mlflow_tracking_uri is a http[s] URL, the command will automatically open it.

42 Chapter 4. Introduction

https://www.mlflow.org/docs/latest/tracking.html#tracking-ui
https://www.mlflow.org/docs/latest/tracking.html#mlflow-tracking-server-optional

CHAPTER

FIVE

INTRODUCTION

5.1 Pipeline serving with kedro-mlflow

5.1.1 Introduction to Mlflow Models

Mlflow Models are a standardised agnostic format to store machine learning models. They intend to be standalone to
be as portable as possible to be deployed virtually anywhere and mlflow provides built-in CLI commands to deploy a
mlflow model to most common cloud platforms or to create an API.

A Mlflow Model is composed of:

• a MLModel file which is a configuration file to indicate to mlflow how to load the model. This file may also
contain the Signature of the model (i.e. the Schema of the input and output of your model, including the
columns names and order) as well as example data.

• a conda.yml file which contains the specifications of the virtual conda environment inside which the model
should run. It contains the packages versions necessary for your model to be executed.

• a model.pkl (or a python_function.pkl for custom model) file containing the trained model.

• an artifacts folder containing all other data necessary to execute the models

Mlflow enable to create custom models “flavors” to convert any object to a Mlflow Model providing we have these
informations. Inside a Kedro prpojects, the Pipeline and DataCatalog objects contains all these informations: as a
consequence, it is easy to create a custom model to convert entire Kedro Pipelines to mlflow models.

5.1.2 Pre-requisite for serving a pipeline

You can log any Kedro Pipeline matching the following requirements:

• one of its input must be a pandas.DataFrame, a spark.DataFrame or a numpy.array. This is the input
which contains the data to predict on. This can be any Kedro AbstractDataset which loads data in one of
the previous three formats. It can also be a MemoryDataset and not be persisted in the catalog.yml.

• all its other inputs must be persisted on disk (e.g. if the machine learning model must already be trained and
saved so we can export it).

Note: if the pipeline has parameters, they will be persisted before exporting the model, which implies that you will not
be able to modify them at runtime. This is a limitation of mlflow.

43

https://www.mlflow.org/docs/latest/models.html

kedro-mlflow, Release 0.12.0

5.2 Register a pipeline to mlflow with KedroPipelineModel custom
mlflow model

kedro-mlflow has a KedroPipelineModel class (which inherits from mlflow.pyfunc.PythonModel) which can
turn any kedro Pipeline object to a Mlflow Model.

To convert a Pipeline to a mlflow model, you need to create a KedroPipelineModel and then log it to mlflow. An
example is given in below snippet:

from pathlib import Path
from kedro.framework.session import KedroSession
from kedro.framework.startup import bootstrap_project

bootstrap_project(r"<path/to/project>")
session = KedroSession.create(project_path=r"<path/to/project>")

"pipeline" is the Pipeline object you want to convert to a mlflow model

context = session.load_context() # this setups mlflow configuration
catalog = context.catalog
pipeline = context.pipelines["<my-pipeline>"]
input_name = "instances"

artifacts are all the inputs of the inference pipelines that are persisted in the␣
→˓catalog

(optional) get the schema of the input dataset
input_data = catalog.load(input_name)
model_signature = infer_signature(model_input=input_data)

you can optionally pass other arguments, like the "copy_mode" to be used for each␣
→˓dataset
kedro_pipeline_model = KedroPipelineModel(

pipeline=pipeline, catalog=catalog, input_name=input_name
)

artifacts = kedro_pipeline_model.extract_pipeline_artifacts()

mlflow.pyfunc.log_model(
artifact_path="model",
python_model=kedro_pipeline_model,
artifacts=artifacts,
conda_env={"python": "3.10.0", dependencies: ["kedro==0.18.11"]},
model_signature=model_signature,

)

Note that you need to provide the log_model function a bunch of non trivial-to-retrieve informations (the conda
environment, the “artifacts” i.e. the persisted data you need to reuse like tokenizers / ml models / encoders,
the model signature i.e. the columns names and types. . .). The KedroPipelineModel object has methods like
extract_pipeline_artifacts to help you, but it needs some work on your side.

Saving Kedro pipelines as Mlflow Model objects is convenient and enable pipeline serving. However, it
does not does not solve the decorrelation between training and inference: each time one triggers a training

44 Chapter 5. Introduction

kedro-mlflow, Release 0.12.0

pipeline, (s)he must think to save it immediately afterwards. kedro-mlflow offers a convenient API to
simplify this workflow, as described in the following sections.

5.3 Register a pipeline to mlflow with KedroPipelineModel custom
mlflow model

You can log a Kedro Pipeline to mlflow as a custom model through the CLI with modelify command:

kedro mlflow modelify --pipeline=<your-pipeline> --input-name <name-in-catalog-of-input-
→˓data>

This command will create a new run with an artifact named model. Open the user interface with kedro mlflow ui
to check the result. You can also:

• specify the run id in which you want to log the pipeline with the --run-id argument, and its name with the
–run-name argument.

• pass almost all arguments accepted by mlflow.pyfunc.log_model, see the list of all accepted arguments in
the API documentation

5.4 Automatically log an inference after running the training pipeline

For consistency, you may want to log an inference pipeline (including some data preprocessing and prediction post
processing) after you ran a training pipeline, with all the artifacts newly generated (the new model, encoders, vectoriz-
ers. . .).

5.4.1 Getting started

1. Install kedro-mlflow MlflowHook (this is done automatically if you have installed kedro-mlflow in a
kedro>=0.16.5 project)

2. Turn your training pipeline in a PipelineML object with pipeline_ml_factory function in your
pipeline_registry.py:

pipeline_registry.py for kedro>=0.17.2 (hooks.py for ``kedro>=0.16.5, <0.17.2)

from kedro_mlflow_tutorial.pipelines.ml_app.pipeline import create_ml_pipeline

def register_pipelines(self) -> Dict[str, Pipeline]:
ml_pipeline = create_ml_pipeline()
training_pipeline_ml = pipeline_ml_factory(

training=ml_pipeline.only_nodes_with_tags("training"),
inference=ml_pipeline.only_nodes_with_tags("inference"),
input_name="instances",
log_model_kwargs=dict(

artifact_path="kedro_mlflow_tutorial",
conda_env={

"python": 3.10,
"dependencies": [f"kedro_mlflow_tutorial=={PROJECT_VERSION}"],

(continues on next page)

5.3. Register a pipeline to mlflow with KedroPipelineModel custom mlflow model 45

https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model
https://kedro-mlflow.readthedocs.io/en/stable/source/08_API/kedro_mlflow.framework.cli.html#modelify

kedro-mlflow, Release 0.12.0

(continued from previous page)

},
signature="auto",

),
)

return {"training": training_pipeline_ml}

3. Persist your artifacts locally in the catalog.yml

label_encoder:
type: pickle.PickleDataset # <- This must be any Kedro Dataset other than
→˓"MemoryDataset"
filepath: data/06_models/label_encoder.pkl # <- This must be a local path, no␣
→˓matter what is your mlflow storage (S3 or other)

4. Launch your training pipeline:

kedro run --pipeline=training

The inference pipeline will automagically be logged as a mlflow model at the end!
5. Go to the UI, retrieve the run id of your “inference pipeline” model and use it as you want, e.g. in the catalog.

yml:

catalog.yml

pipeline_inference_model:
type: kedro_mlflow.io.models.MlflowModelTrackingDataset
flavor: mlflow.pyfunc
pyfunc_workflow: python_model
artifact_path: kedro_mlflow_tutorial # the name of your mlflow folder = the model_
→˓name in pipeline_ml_factory
run_id: <your-run-id>

5.4.2 Complete step by step demo project with code

A step by step tutorial with code is available in the kedro-mlflow-tutorial repository on github.

You have also other resources to understand the rationale:

• an explanation of the PipelineML class in the python objects section

• detailed explanations on this issue.

• an example of use in a user project in this repo.

46 Chapter 5. Introduction

https://github.com/Galileo-Galilei/kedro-mlflow-tutorial#serve-the-inference-pipeline-to-a-end-user
https://github.com/Galileo-Galilei/kedro-mlflow/issues/16
https://github.com/laurids-reichardt/kedro-examples/blob/kedro-mlflow-hotfix2/text-classification/src/text_classification/pipelines/pipeline.py

kedro-mlflow, Release 0.12.0

5.4.3 Motivation

You can find more about the motivations in https://kedro-mlflow.readthedocs.io/en/stable/source/05_framework_ml/
index.html.

5.5 Deployment patterns for kedro pipelines

A step by step tutorial with code is available in the kedro-mlflow-tutorial repository on github which explains how to
serve the pipeline as an API or a batch.

5.5. Deployment patterns for kedro pipelines 47

https://kedro-mlflow.readthedocs.io/en/stable/source/05_framework_ml/index.html
https://kedro-mlflow.readthedocs.io/en/stable/source/05_framework_ml/index.html
https://github.com/Galileo-Galilei/kedro-mlflow-tutorial#serve-the-inference-pipeline-to-an-end-user

kedro-mlflow, Release 0.12.0

48 Chapter 5. Introduction

CHAPTER

SIX

INTRODUCTION

6.1 Why we need a mlops framework to manage machine learning de-
velopment lifecycle

6.1.1 Machine learning deployment is hard because it comes with a lot of con-
straints and no adequate tooling

6.1.1.1 Identifying the challenges to address when deploying machine learning

It is a very common pattern to hear that “machine learning deployment is hard”, and this is supposed to explain why
so many firms do not achieve to insert ML models in their IT systems (and consequently, not make money despite
consequent investments in ML).

On the other hand, you can find thousands of tutorial across the web to explain how to deploy a ML API in 5 min,
either locally or on the cloud. There is also a large amount of training sessions which can teach you “how to become a
machine learning engineer in 3 months”.

Who is right then? Both!

Actually, there is a confusion on what “deployment” means, especially in big enterprises that are not “tech native” or
for newbies in ML world. Serving a model over an API pattern is a start, but you often need to ensure (at least) the
following properties for your system:

• scalability and cost control: in many cases, you need to be able to deal with a lot of (possibly concurrent)
requests (likely much more than during training phase). It may be hard to ensure that the app will be able to
deal with such an important amount of data. Another issue is that ML oftens needs specific infrastrusture (e.g.,
GPU’s) which are very expensive. Since the request against the model often vary wildly over time, it may be
important to adapt the infrastructure in real time to avoid a lot of infrastructure costs

• speed: A lot of recent state of the art (SOTA) deep learning / ensemble models are computationally heavy and
this may hurt inference speed, which is critical for some systems.

• disponibility and resilience: Machine learning systems are more complex than traditional softwares because
they have more moving parts (i.e. data and parameters). This increases the risk of errors, and since ML systems
are used for critical systems making both the infrastructure and the code robust is key.

• portability / ease of integration with external components: ML models are not intended to be directly used
by the end users, but rather be consumed by another part of your system (e.g a call to an API). To speed up
deployment, your model must be easy to be consumed, i.e. as self contained as possible. As a consequence, you
must deploy a ML pipeline which hanbles business objects instead of only a ML model. If the other part
which consumes your API needs to make a lot of data preprocessing before using your model, it makes it:

– very risky to use, because preprocessing and model are decoupled: any change in your model must be
reflected in this other data pipeline and there is a huge mismatch risk when redeploying

49

kedro-mlflow, Release 0.12.0

– slow and costful to deploy because each deployment of your model needs some new development on the
client side

– poorly reusable beacuse each new app who wants to use the model needs some specific development on its
own

• reproducibility: the ML development is very iterative by nature. You often try a simple baseline model and
iterate (sometimes directly by discussing with the final user) to finally get the model that suits the most your
needs (wich is the balance between speed / accuracy / interpretability / maintenance costs / inference costs /
data availability / labelling costs. . .). Looping through these iterations, it is very easy to forget what was the best
model. You should not rely only on your memory to compare your experiments. Moreover, many countries have
regulatory constraints to avoid discriminations (e.g. GDPR in the EU), and your must be able to justify how your
model was built and to that extent reproducibility is key. It is also essential when you redeploy a model that turns
out to be worse than the old one and you have to rollback fast.

• monitoring and ease of redeployment: It is well known that model quality decay over time (sometimes
quickly!), and if you use ML for a critical activity, you will have to retrain your model periodically to main-
tain its performance. It is critical to be able to redeploy easily your model. This implies that retraining (or even
redeployment of a new model) must be as automated as possible to ensure deployment speed and model quality.

An additional problem that happens in real world is that it is sometimes poorly understood by end users that the ML
model is not standalone. It implies external developments from the client side (at least to call the model, sometimes to
adapt a data pipeline or to change the user interface to add the ML functionality) and they have hard times to understand
the entire costs of a ML project as well as their responsibilities in the project. This is not really a problem of ML but
rather on how to give a minimal culture on ML to business end users.

6.1.1.2 A comparison between traditional software development and machine learning projects

6.1.1.2.1 ML and traditional software have different moving parts

A traditional software project contains several moving parts:

• code

• environment (packages versions. . .)

• infrastructure (build on Windows, deploy on linux)

Since it is a more mature industry, efficient tools exists to manage these items (Git, pip/conda, infra as code. . .). On
the other hand, a ML project has additional moving parts:

• parameters

• data

As ML is a much less mature field, efficient tooling to adress these items are very recent and not completely standardized
yet (e.g. Mlflow to track parameters, DVC to version data, great-expectations to monitor data which go through
your pipelines, tensorboard to monitor your model metrics. . .)

Mlflow is one of the most mature tool to manage these new moving parts.

50 Chapter 6. Introduction

kedro-mlflow, Release 0.12.0

6.1.1.2.2 ML and traditional software have different development lifecycles

In traditional software, the development workflow is roughly the following:

• you create a git branch

• you develop your new feature

• you add tests and ensure there are no regression

• you merge the branch on the main branch to add your feature to the codebase

This is a linear development process based on determinist behaviour of the code.

However in ML development, the workflow is much more iterative and may looklike this:

• you create a notebook

• you make some exploration on the data with some descriptive analysis and a baseline model

• you switch to a git branch and python scripts once the model is quite stable

• you retrain the model, eventually do some parameter tuning

• you merge your code on the main branch to share your work

If you need to modify the model later (do a different preprocessing, change the model type. . .), you do not add code to
the codebase, you modify the existing code. This makes unit testing much harder because the desired features change
over time.

The other difficulty when testing machine learning applications is it hard to test for regression, since the model depends
on underlying data and the chosen metrics. If a new model performs slightly better or worse than the previous one ont
the same dataset, it may be due to randomness and not to code quality. If the metric varies on a different dataset, it is
even harder to know if it is due to code quality or to innate randomness.

This is a cyclic development process based on a stochastic behaviour of the code.

Kedro is a very new tool and cannot be called “mature” at this stage but tries to solve this develop-
ment lifecyle with a very fluent API to create and modify machine learning pipelines.

6.1.2 Deployment issues addressed by kedro-mlflow and their solutions

6.1.2.1 Out of scope

We will focus on machine learning development lifecycle. As a consequence, these items are out of scope:

• Orchestration

• Issues related to infrastructure (related, but not limited to, the 3 first items of above list: scalability and cost
control, inference speed, disponibility and resilience)

• Issues related to model monitoring: Data distribution changes over time, model decay, data access. . .

6.1. Why we need a mlops framework to manage machine learning development lifecycle 51

kedro-mlflow, Release 0.12.0

6.1.2.2 Issue 1: The training process is poorly reproducible

The main reason which explains why training is hard to reproduce is the iterative process. Data scientists launch several
times the same run with slightly different parameters / data / preprocessing. If they rely on their memory to compare
these runs, they will likely struggle to remember what was the best one.

kedro-mlflow offers automatic parameters versioning when a pipeline is ran to easily link a model to
its training parameters.

Note that there is also a lot of “innate” randomness in ML pipelines and if a seed is not set explictly as a parame-
ter , the run will likely not be reproducible (separation train/test/validation, moving underlying data sources, random
initialisation for optimizers, random split for bootstrap. . .).

6.1.2.3 Issue 2: The data scientist and stakeholders focus on training

While building the ML model, the inference pipeline is often completely ignored by the data scientist. The best example
are Kaggle competitions where a very common workflow is the following:

• merge the training and the test data at the beginning of their script

• do the preprocessing on the entire dataset

• resplit just before training the model

• train the model on training data

• predict on test data

• anayze their metrics, finetune their hyper parameters

• submit their predictions as data (i.e. as a file) to Kaggle

The very important issue which arises with such a workflow is that you completely ignore the non reproducibility
which arises from the preprocessing (encoding, randomness. . .). Most Kaggle solutions are never tested on an end
to end basis, i.e. by running the inference pipeline from the test data input file to the predictions file. This facilitates
very bad coding practices and teaches beginner data scientists bad software engineering practice.

kedro-mlflow enables to log the inference pipeline as a Mlflow Model (through a KedroPipelineModel
class) to ensure that you deploy the inference pipeline as a whole.

6.1.2.4 Issue 3: Inference and training are entirely decoupled

As stated previous paragraph, the inference pipeline is not a primary concern when experimenting and developing your
model. This raises strong reproducibility issues. Assume that you have logged the model and all its parameters when
training (which is a good point!), you will still need to retrieve the code used during training to create the inference
pipeline. This is in my experience quite difficult:

• in the best case, you have trained the model from a git sha which is logged in mlflow. Any potential user can
(but it takes time) recreate the exact inference pipeline from your source code, and retrieve all necessary artifacts
from mlflow. This is tedious, error prone, and gives a lot of responsibility and work to your end user, but at least
it makes your model usable.

• most likely, you did not train your model from a version control commit. While experimenting /debug, it is very
common to modify the code and retrain without committing. The exact code associated to a given model will
likely be impossible to find out later.

kedro-mlflow offers a PipelineML (and its helpers pipeline_ml_factory) class which binds the
training and inference pipeline, and a hook which autolog such pipelines when they are run. This
enables data scientists to ensure that each training model is logged with its associated inference pipeline,

52 Chapter 6. Introduction

kedro-mlflow, Release 0.12.0

and is ready to use for any end user. This decreases a lot the necessary cognitive complexity to ensure
coherence between training and inference.

6.1.2.5 Issue 4: Data scientists do not handle business objects

It is often said that data scientists deliver machine learning models. This assumes that all the preprocessing will be
recoded the end user of your model. This is a major cause of poor adoption of your model in an enterprise setup because
it makes your model:

• hard to use (developments are need on the client side)

• hard to update (it needs code update from the end user)

• very error prone (never trust the client!)

If you struggle representing it, imagine that you have developed a NLP model. Would you really ask your end user to
give you a one-hot encoded matrix or BERT-tokenized texts with your custom embbeddings and vocabulary?

Your model must handle business objects (e.g. a mail, a movie review, a customer with its characteristic, a raw image. . .)
to be usable.

Kedro Pipeline’s are able to handle processing from the business object to the prediction. Your real
model must be a Pipeline, and the KedroPipelineModel of kedro-mlflow helps to store them and
log them in mlflow. Additionally, kedro-mlflow suggests how your project should be organized in “apps”
to make this transition easy.

6.1.2.6 Overcoming these problems: support an organisational solution with an efficient tool

kedro-mlflow assume that we declare a clear contrat of what the output of the data science project is: it is an an
inference pipeline. This defines a clear “definition of done” of the data science project: is it ready to deploy?

The downside of such an approach is that it increases data scientist’s responsibilities,because s(he) is responsible for
his code.

kedro-mlflow offers a very convenient way (through the pipeline_ml_factory function) to make sure that each
experiment will result in creating a compliant “output”.

This is very transparent for the data scientist who have no extra constraints (apart from developing in Kedro) to respect
this contract. Hence, the data scientist still benefits from the interactivity he needs to work. This is why we want to
leverage Kedro which is very flexible and offers a convenient way to transition from notebooks to pipeline, and leverage
Mlflow for standardising the definiton of an “output” of a datscience project.

Enforcing these solutions with a tool: kedro-mlflow at the rescue

6.2 The components of a machine learning application

6.2.1 Definition: apps of a machine learning projects

A machine learning project is composed of 3 main blocks that I will call “apps” in the rest of the paragraph. These 3
apps are:

• The etl_app, which is the application in charge of bringing the data to the machine learning pipeline

• The ml_app, which is the application in charge of managing the machine learning model (including training and
inference)

6.2. The components of a machine learning application 53

kedro-mlflow, Release 0.12.0

• The user_app which is the application in charge of consuming the predictions of the machine learning model
and doing the actual business logic with it

6.2.2 Difference between an app and a Kedro pipeline

Note that the previously defined “apps” are not pipelines in the Kedro sense. On the contrary, each app likely contain
several (Kedro?) pipelines.

The main differences between these apps are:

• Each app development / deployment is likely under the responsibility of different people / teams.

• Each app has a different development lifecyle. It implies that development can be parallelized, and releasing one
app to fix a bug does not imply to release the other ones. If your training pipeline is time /resources consuming,
you do not want a bugfix in the user_app to trigger a retraining of your model, do you?

• Each app has its own orchestration timeline. For instance, the data produced by the etl can be stored independently
of whether the user_app and the ml_app consume them “on the fly” or not.

• Each app do not communicate with the other apart from a clear interface: the data schema accepted as inputs/
output of each app.

6.2.3 Apps development lifecycle in a machine learning project

6.2.3.1 The data scientist creates at least part of the 3 apps

Note that there are as many etl_app and user_app as needed for the different use of your model. Since training the
model is a specific use, the data scientist will need one to create its own etl_app and user_app. These apps will
very likely be replaced later by the true business app dedicated to the model use.

We saw that the data scientist has to create some code that will be replaced by other people code when deploying the
model. As a consequence, the interactions between these apps must be very clearly defined at the beginning of the
project. We claim that it is possible to cover most use case with the following schema:

The ml_app takes instances (i.e. examples of the business object to handle) as input. This implies that the ml_app
will include some machine learning-specific preprocessing and not only the model training. It also (optionally) takes
labels as inputs if the underlying problem is supervised. Even in this situation, the labels will not be known at inference
time so the etl_app does not necessarily produce them.

This is a key principle: anyone who wants to consume the model later will need to bring instances of the same business
object.

54 Chapter 6. Introduction

kedro-mlflow, Release 0.12.0

6.2.3.2 The etl_app

The etl_app is the one in charge of bringing the data to the ml_app. As a consequence, each different user_app will
likely have to develop its associated etl_app to consume the ml_app.

From the data scientist point of view, this app will create the training dataset. This app can do very different things:

• send request over an API

• extract from a database (with SQL, SAS. . .)

• scrape data from a website

• download data from an URL

• read data from disk

• . . .

For the labels, in addition of above possibility, this app can be a labelling tool with human labellers who provide the
needed “true reference” as labels.

It is also common to mix several of above approaches to gather different data sources, and to have different Kedro
pipelines in this app.

Note that during a training, this app very likely retrieves batch data from a given time period. This will necessarily be
different when using the model, because the user often want to use live stream data.

6.2.3.3 The ml_app

This app is the core of the data scientist work. It is at least composed of two kedro pipelines:

• a training pipeline, which produces all the artifacts (e.g. any object fitted on data, including obviously the
machine learning model itself)

• an inference pipeline which takes an instance as input and returns the prediction of the model

It is quite common to have other pipelines depending on the data scientist needs (an evaluation pipelines which produces
metrics for a given model, an explanation pipeline to produce explanation for a specific instance like shap values or
importance pixel, . . .).

It is quite common to see data scientists duplicate the code when creating the inference pipeline, because it is written
after the training pipeline. Thanks to kedro tags, it is possible to mark a node to use it in two different pipelines.
Reuse is a key component to improve quality and deployment speed. Each time a node is created (i.e. a function
is called), the data scientist should wonder if it will be used in training pipeline only or in both (training and
inference), and tag it accordingly.

6.2.3.4 The user_app

The user_app must not be aware of how the inference pipeline operates under the hood. The user_app must either:

• takes a run_id from mlflow to retrieve the model from mlflow and predict with it. This is mainly useful for batch
predictions.

• call the served model from an API endpoint and only get predictions as inputs. This assumes that the model has
been served, which is very easy with mlflow.

After that, the user_app can use the predictions and apply any needed business logic to them.

6.2. The components of a machine learning application 55

kedro-mlflow, Release 0.12.0

6.3 kedro-mlflow mlops solution

6.3.1 Reminder

We assume that we want to solve the following challenges among those described in “Why we need a mlops framework”
section:

• serve pipelines (which handles business objects) instead of models

• synchronize training and inference by packaging inference pipeline at training time

6.3.2 Enforcing these principles with a dedicated tool

6.3.2.1 Synchronizing training and inference pipeline

To solve the problem of desynchronization between training and inference, kedro-mlflow offers a PipelineML class
(which subclasses Kedro Pipeline class). A PipelineML is simply a Kedro standard Pipeline (the “training”)
which has a reference to another Pipeline (the “inference”). The two pipelines must share a common input DataSet
name, which represents the data you will perform operations on (either train on for the training pipeline, or predict on
for the inference pipeline).

This class implements several methods to compare the DataCatalogs associated to each of the two binded pipelines
and performs subsetting oparations. This makes it quite difficult to handle directly. Fortunately, kedro-mlflow pro-
vides a convenient API to create PipelineML objects: the pipeline_ml_factory function.

The use of pipeline_ml_factory is very straightforward, especially if you have used the project architecture de-
scribed previously. The best place to create such an object is your hooks.py file which will look like this:

hooks.py
from kedro_mlflow_tutorial.pipelines.ml_app.pipeline import create_ml_pipeline

class ProjectHooks:
@hook_impl
def register_pipelines(self) -> Dict[str, Pipeline]:

ml_pipeline = create_ml_pipeline()

convert your two pipelines to a PipelinML object
training_pipeline_ml = pipeline_ml_factory(

training=ml_pipeline.only_nodes_with_tags("training"),
inference=ml_pipeline.only_nodes_with_tags("inference"),
input_name="instances",

)

return {"__default__": training_pipeline_ml}

So, what? We have created a link between our two pipelines, but the gain is not obvious at first glance.
The 2 following sections demonstrates that such a construction enables to package and serve automatically
the inference pipeline when executing the training one.

56 Chapter 6. Introduction

kedro-mlflow, Release 0.12.0

6.3.2.2 Packaging and serving a Kedro Pipeline

Mlflow offers the possibility to create custom model class. Mlflow offers a variety of tool to package/containerize,
deploy and serve such models.

kedro-mlflow has a KedroPipelineModel class (which inherits from mlflow.pyfunc.PythonModel) which can
turn any kedro PipelineML object to a Mlflow Model.

To convert a PipelineML, you need to declare it as a KedroPipelineModel and then log it to mlflow:

from pathlib import Path
from kedro.framework.context import load_context
from kedro_mlflow.mlflow import KedroPipelineModel
from mlflow.models import ModelSignature

pipeline_training is your PipelineML object, created as previsously
catalog = load_context(".").io

artifacts are all the inputs of the inference pipelines that are persisted in the␣
→˓catalog
artifacts = pipeline_training.extract_pipeline_artifacts(catalog)

(optional) get the schema of the input dataset
input_data = catalog.load(pipeline_training.input_name)
model_signature = infer_signature(model_input=input_data)

kedro_model = KedroPipelineModel(pipeline=pipeline_training, catalog=catalog)

mlflow.pyfunc.log_model(
artifact_path="model",
python_model=kedro_model,
artifacts=artifacts,
conda_env={"python": "3.10.0", dependencies: ["kedro==0.18.11"]},
signature=model_signature,

)

Note that you need to provide the log_model function a bunch of non trivial-to-retrieve informations (the conda envi-
ronment, the “artifacts” i.e. the persisted data you need to reuse like tokenizers / ml models / encoders, the model signa-
ture i.e. the columns names and types. . .). The PipelineML object has methods like extract_pipeline_artifacts
to help you, but it needs some work on your side.

Saving Kedro pipelines as Mlflow Model objects is convenient and enable pipeline serving serving. How-
ever, it does not does not solve the decorrelation between training and inference: each time one triggers a
training pipeline, (s)he must think to save it immediately afterwards. Good news: triggering operations at
some “execution moment” of a Kedro Pipeline (like after it finished runnning) is exactly what hooks are
designed for!

6.3. kedro-mlflow mlops solution 57

https://www.mlflow.org/docs/latest/models.html#custom-python-models

kedro-mlflow, Release 0.12.0

6.3.2.3 kedro-mlflow’s magic: inference autologging

When running the training pipeline, we have all the desired informations we want to pass to the KedroPipelineModel
class and mlflow.pyfunc.log_model function:

• the artifacts exist in the DataCatalog if they are persisted

• the “instances” dataset is loaded at the beginning of training, thus we can infer its schema (columns names and
types)

• the inference and training pipeline codes are retrieved at the same moments, so consistency checks can be per-
formed

Hence, kedro-mlflow provides a MlflowHook.after_pipeline_run hook which perfoms the following opera-
tions:

• check if the pipeline that have ust been run is a PipelineML object

• in case it is, create the KedroPipelineModel like above and log it to mlflow

We have achieved perfect synchronicity since the exact inference pipeline (with code, and artifacts) will be
logged in mlflow each time the training pipeline is executed. The model is than accessible in the mlflow
UI “artifacts” section and can be downloaded, or served as an API with the mlflow serve command, or
it can be used in the catalog.yml with the MlflowModelTrackingDataset for further reuse.

6.3.2.4 Reuse the model in kedro

Say that you an to reuse this inference model as the input of another kedro pipeline (one of the “user_app” application).
kedro-mlflow provides a MlflowModelTrackingDataset class which can be used int the catalog.yml file:

catalog.yml

pipeline_inference_model:
type: kedro_mlflow.io.models.MlflowModelTrackingDataset
flavor: mlflow.pyfunc
pyfunc_workflow: python_model
artifact_path: kedro_mlflow_tutorial # the name of your mlflow folder = the model_

→˓name in pipeline_ml_factory
run_id: <your-run-id>

58 Chapter 6. Introduction

https://www.mlflow.org/docs/latest/cli.html#mlflow-models-serve
https://github.com/Galileo-Galilei/kedro-mlflow-tutorial#serve-the-inference-pipeline-to-a-end-user

CHAPTER

SEVEN

INTRODUCTION

7.1 How to use kedro-mlflow in a notebook

Important: You need to install ipython to access notebook functionalities.

7.1.1 Reminder on mlflow’s limitations with interactive use

Data science project lifecycle are very iterative. Mlflow intends to track parameters changes to improve reproducibility.
However, one must be conscious that being able to execute functions outside of a end to end pipeline puts a strong
burden on the user shoulders because he is in charge to make the code execution coherent by running the notebooks
cells in the right order. Any back and forth during execution to change some parameters in a previous notebook cells
and then retrain a model creates an operational risk that the recorded parameter stored in mlflow is different than the
real parameter used for training the model.

To make a long story short: forget about efficient reproducibility when using mlflow interactively.

It may still be useful to track some experiments results especially if they are long to run and vary wildly with
parameters, e.g. if you are performing hyperparameter tuning.

These limitations are inherent to the data science process, not to mlflow itself or the plugin.

7.1.2 Setup mlflow configuration in your notebook

Open your notebook / ipython session with the Kedro CLI:

kedro jupyter notebook

Or if you are on JupyterLab,

%load_ext kedro.ipython

Kedro creates a bunch of global variables, including a session, a context and a catalog which are automatically
accessible.

When the context was created, kedro-mlflow automatically:

• loaded and setup (create the tracking uri, export credentials. . .) the mlflow configuration of your mlflow.yml

• import mlflow which is now accessible in your notebook

If you change your mlflow.yml, reload the kedro extension for the changes to take effect.

59

https://kedro.readthedocs.io/en/stable/tools_integration/ipython.html#use-kedro-with-ipython-and-jupyter

kedro-mlflow, Release 0.12.0

7.1.3 Difference with running through the CLI

• The DataSets load and save methods works as usual. You can call catalog.
save("my_artifact_dataset", data) inside a cell, and your data will be logged in mlflow properly
(assuming “my_artifact_dataset” is a kedro_mlflow.io.MlflowArtifactDataset).

• The hooks which automatically save all parameters/metrics/artifacts in mlflow will work if you run the session
interactively, e.g.:

session.run(
pipeline_name="my_ml_pipeline",
tags="training",
from_inputs="data_2",
to_outputs="data_7",

)

but it is not very likely in a notebook.

• if you need to interact manually with the mlflow server, you can use context.mlflow.server.
_mlflow_client.

7.1.4 Guidelines and best practices suggestions

During experimentation phase, you will likely not run entire pipelines (or sub pipelines filtered out between some inputs
and outputs). Hence, you cannot benefit from Kedro’s hooks (and hence from kedro-mlflow tracking). From this
moment on, perfect reproducbility is impossible to achieve: there is no chance that you manage to maintain a perfectly
linear workflow, as you will go back and forth modifying parameters and code to create your model.

I suggest to :

• focus on versioning parameters and metrics. The goal is to finetune your hyperparameters and to be able to
remember later the best setup. It is not very important to this stage to version all parameters (e.g. preprocessing
ones) nor models (after all you will need an entire pipeline to predict and it is very unlikely that you will need to
reuse these experiment models one day.) It may be interesting to use mlflow.autolog() feature to have a easy
basic setup.

• transition quickly to kedro pipelines. For instance, when you preprocessing is roughly defined, try to put it
in kedro pipelines. You can then use notebooks to experiment / perfom hyperparameter tuning while keeping
preprocessing “fixed” to enhance reproducibility. You can run this pipeline interactively with :

res = session.run(
pipeline_name="my_preprocessing_pipeline",
tags="training",
from_inputs="data_2",
to_outputs="data_7",

)

res is a python dict with the outputs of your pipeline (e.g. a “preprocessed_data” pandas.DataFrame), and you can
use it interactively in your notebook.

60 Chapter 7. Introduction

CHAPTER

EIGHT

INTRODUCTION

8.1 New DataSet

8.1.1 MlflowArtifactDataset

MlflowArtifactDataset is a wrapper for any AbstractDataset which logs the dataset automatically in mlflow as
an artifact when its save method is called. It can be used both with the YAML API:

my_dataset_to_version:
type: kedro_mlflow.io.artifacts.MlflowArtifactDataset
dataset:

type: pandas.CSVDataset # or any valid kedro DataSet
filepath: /path/to/a/local/destination/file.csv

or with additional parameters:

my_dataset_to_version:
type: kedro_mlflow.io.artifacts.MlflowArtifactDataset
dataset:

type: pandas.CSVDataset # or any valid kedro DataSet
filepath: /path/to/a/local/destination/file.csv
load_args:

sep: ;
save_args:

sep: ;
... any other valid arguments for dataset

run_id: 13245678910111213 # a valid mlflow run to log in. If None, default to␣
→˓active run
artifact_path: reporting # relative path where the artifact must be stored. if None,

→˓ saved in root folder.

or with the python API:

from kedro_mlflow.io.artifacts import MlflowArtifactDataset
from kedro_datasets.pandas import CSVDataset

csv_dataset = MlflowArtifactDataset(
dataset={"type": CSVDataset, "filepath": r"/path/to/a/local/destination/file.csv"}

)
csv_dataset.save(data=pd.DataFrame({"a": [1, 2], "b": [3, 4]}))

61

kedro-mlflow, Release 0.12.0

8.1.2 Metrics DataSets

8.1.2.1 MlflowMetricDataset

The MlflowMetricDataset is documented here.

8.1.2.2 MlflowMetricHistoryDataset

The MlflowMetricHistoryDataset is documented here.

8.1.3 Models DataSets

8.1.3.1 MlflowModelTrackingDataset

The MlflowModelTrackingDataset accepts the following arguments:

• flavor (str): Built-in or custom MLflow model flavor module. Must be Python-importable.

• run_id (Optional[str], optional): MLflow run ID to use to load the model from or save the model to. It plays the
same role as “filepath” for standard mlflow datasets. Defaults to None.

• artifact_path (str, optional): the run relative path tothe model.

• pyfunc_workflow (str, optional): Either python_model or loader_module.See mlflow workflows.

• load_args (Dict[str, Any], optional): Arguments to load_model function from specified flavor. Defaults to
None.

• save_args (Dict[str, Any], optional): Arguments to log_model function from specified flavor. Defaults to
None.

You can either only specify the flavor:

from kedro_mlflow.io.models import MlflowModelTrackingDataset
from sklearn.linear_model import LinearRegression

mlflow_model_tracking = MlflowModelTrackingDataset(flavor="mlflow.sklearn")
mlflow_model_tracking.save(LinearRegression())

Let assume that this first model has been saved once, and you xant to retrieve it (for prediction for instance):

mlflow_model_tracking = MlflowModelTrackingDataset(
flavor="mlflow.sklearn", run_id="<the-model-run-id>"

)
my_linear_regression = mlflow_model_tracking.load()
my_linear_regression.predict(

data
) # will obviously fail if you have not fitted your model object first :)

You can also specify some logging parameters:

mlflow_model_tracking = MlflowModelTrackingDataset(
flavor="mlflow.sklearn",
run_id="<the-model-run-id>",
save_args={

(continues on next page)

62 Chapter 8. Introduction

https://kedro-mlflow.readthedocs.io/en/latest/source/04_experimentation_tracking/05_version_metrics.html#saving-a-single-float-as-a-metric-with-mlflowmetricdataset
https://kedro-mlflow.readthedocs.io/en/latest/source/04_experimentation_tracking/05_version_metrics.html#saving-a-single-float-as-a-metric-with-mlflowmetricdataset
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#workflows
https://www.mlflow.org/docs/latest/python_api/mlflow.sklearn.html#mlflow.sklearn.log_model

kedro-mlflow, Release 0.12.0

(continued from previous page)

"conda_env": {"python": "3.10.0", "dependencies": ["kedro==0.18.11"]},
"input_example": data.iloc[0:5, :],

},
)
mlflow_model_tracking.save(LinearRegression().fit(data))

As always with kedro, you can use it directly in the catalog.yml file:

my_model:
type: kedro_mlflow.io.models.MlflowModelTrackingDataset
flavor: "mlflow.sklearn"
run_id: <the-model-run-id>,
save_args:

conda_env:
python: "3.10.0"
dependencies:

- "kedro==0.18.11"

8.1.3.2 MlflowModelLocalFileSystemDataset

The MlflowModelTrackingDataset accepts the following arguments:

• flavor (str): Built-in or custom MLflow model flavor module. Must be Python-importable.

• filepath (str): Path to store the dataset locally.

• pyfunc_workflow (str, optional): Either python_model or loader_module. See mlflow workflows.

• load_args (Dict[str, Any], optional): Arguments to load_model function from specified flavor. Defaults to
None.

• save_args (Dict[str, Any], optional): Arguments to save_model function from specified flavor. Defaults to
None.

• version (Version, optional): Kedro version to use. Defaults to None.

The use is very similar to MlflowModelTrackingDataset, but you have to specify a local filepath instead of a
run_id:

from kedro_mlflow.io.models import MlflowModelTrackingDataset
from sklearn.linear_model import LinearRegression

mlflow_model_tracking = MlflowModelLocalFileSystemDataset(
flavor="mlflow.sklearn", filepath="path/to/where/you/want/model"

)
mlflow_model_tracking.save(LinearRegression().fit(data))

The same arguments are available, plus an additional version common to usual AbstractVersionedDataset

mlflow_model_tracking = MlflowModelLocalFileSystemDataset(
flavor="mlflow.sklearn",
filepath="path/to/where/you/want/model",
version="<valid-kedro-version>",

)
my_model = mlflow_model_tracking.load()

8.1. New DataSet 63

https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#workflows
https://kedro.readthedocs.io/en/stable/kedro.io.AbstractVersionedDataset.html

kedro-mlflow, Release 0.12.0

and with the YAML API in the catalog.yml:

my_model:
type: kedro_mlflow.io.models.MlflowModelLocalFileSystemDataset
flavor: mlflow.sklearn
filepath: path/to/where/you/want/model
version: <valid-kedro-version>

8.1.3.3 MlflowModelRegistryDataset

The MlflowModelRegistryDataset accepts the following arguments:

• model_name (str): The name of the registered model is the mlflow registry

• stage_or_version (str): A valid stage (either “staging” or “production”) or version number for the registred
model.Default to “latest” which fetch the last version and the higher “stage” available.

• flavor (str): Built-in or custom MLflow model flavor module. Must be Python-importable.

• pyfunc_workflow (str, optional): Either python_model or loader_module. See mlflow workflows.

• load_args (Dict[str, Any], optional): Arguments to load_model function from specified flavor. Defaults to
None.

We assume you have registered a mlflow model first, either with the MlflowClient or within the mlflow ui, e.g. :

from sklearn.tree import DecisionTreeClassifier

import mlflow
import mlflow.sklearn

with mlflow.start_run():
model = DecisionTreeClassifier()

Log the sklearn model and register as version 1
mlflow.sklearn.log_model(

sk_model=model, artifact_path="model", registered_model_name="my_awesome_model"
)

You can fetch the model by its name:

from kedro_mlflow.io.models import MlflowModelRegistryDataset

mlflow_model_tracking = MlflowModelRegistryDataset(model_name="my_awesome_model")
my_model = mlflow_model_tracking.load()

and with the YAML API in the catalog.yml (only for loading an existing model):

my_model:
type: kedro_mlflow.io.models.MlflowModelRegistryDataset
model_name: my_awesome_model

64 Chapter 8. Introduction

https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#workflows
https://mlflow.org/docs/latest/model-registry.html#adding-an-mlflow-model-to-the-model-registry
https://mlflow.org/docs/latest/model-registry.html#ui-workflow

kedro-mlflow, Release 0.12.0

8.2 Hooks

This package provides 1 new hook.

8.2.1 MlflowHook

This hook :

1. manages mlflow settings at the beginning and the end of the run (run start / end).

2. autolog nodes parameters each time the pipeline is run (with kedro run or programatically).

3. log useful informations for reproducibility as mlflow tags (including kedro Journal information for old kedro
versions and the commands used to launch the run).

4. register the pipeline as a valid mlflow model if it is a PipelineML instance

8.3 Pipelines

8.3.1 PipelineML and pipeline_ml_factory

PipelineML is a new class which extends Pipeline and enable to bind two pipelines (one of training, one of inference)
together. This class comes with a KedroPipelineModel class for logging it in mlflow. A pipeline logged as a mlflow
model can be served using mlflow models serve and mlflow models predict command.

The PipelineML class is not intended to be used directly. A pipeline_ml_factory factory is provided for user
friendly interface.

Example within kedro template:

in src/PYTHON_PACKAGE/pipeline.py

from PYTHON_PACKAGE.pipelines import data_science as ds

def create_pipelines(**kwargs) -> Dict[str, Pipeline]:
data_science_pipeline = ds.create_pipeline()
training_pipeline = pipeline_ml_factory(

training=data_science_pipeline.only_nodes_with_tags(
"training"

), # or whatever your logic is for filtering
inference=data_science_pipeline.only_nodes_with_tags("inference"),

)

return {
"ds": data_science_pipeline,
"training": training_pipeline,
"__default__": data_engineering_pipeline + data_science_pipeline,

}

Now each time you will run kedro run --pipeline=training (provided you registered MlflowHook in you run.
py), the full inference pipeline will be registered as a mlflow model (with all the outputs produced by training as artifacts
: the machine learning model, but also the scaler, vectorizer, imputer, or whatever object fitted on data you create in
training and that is used in inference).

8.2. Hooks 65

kedro-mlflow, Release 0.12.0

Note that:

• the inference pipeline input_name can be a MemoryDataset and it belongs to inference pipeline inputs

• Apart form input_name, all other inference pipeline inputs must be persisted locally on disk (i.e. it must
not be MemoryDataset and must have a local filepath)

• the inference pipeline inputs must belong to training outputs (vectorizer, binarizer, machine learning
model. . .)

• the inference pipeline must have one and only one output

Note: If you want to log a PipelineML object in mlflow programatically, you can use the following code snippet:

from pathlib import Path
from kedro.framework.context import load_context
from kedro_mlflow.mlflow import KedroPipelineModel
from mlflow.models import ModelSignature

pipeline_training is your PipelineML object, created as previsously
catalog = load_context(".").io

artifacts are all the inputs of the inference pipelines that are persisted in the␣
→˓catalog
artifacts = pipeline_training.extract_pipeline_artifacts(catalog)

get the schema of the input dataset
input_data = catalog.load(pipeline_training.input_name)
model_signature = infer_signature(model_input=input_data)

mlflow.pyfunc.log_model(
artifact_path="model",
python_model=KedroPipelineModel(pipeline=pipeline_training, catalog=catalog),
artifacts=artifacts,
conda_env={"python": "3.10.0", dependencies: ["kedro==0.18.11"]},
signature=model_signature,

)

It is also possible to pass arguments to KedroPipelineModel to specify the runner or the copy_mode of
MemoryDataset for the inference Pipeline. This may be faster especially for compiled model (e.g keras, tensor-
flow. . .), and more suitable for an API serving pattern. Since kedro-mlflow==0.12.0, copy_mode="assign" has
become the default.

KedroPipelineModel(pipeline=pipeline_training, catalog=catalog, copy_mode="assign")

Available copy_mode are assign, copy and deepcopy. It is possible to pass a dictionary to specify different copy
mode fo each dataset.

66 Chapter 8. Introduction

kedro-mlflow, Release 0.12.0

8.4 Cli commands

8.4.1 init

kedro mlflow init: this command is needed to initalize your project. You cannot run any other commands before
you run this one once. It performs 2 actions: - creates a mlflow.yml configuration file in your conf/local folder
- replace the src/PYTHON_PACKAGE/run.py file by an updated version of the template. If your template has been
modified since project creation, a warning will be raised. You can either run kedro mlflow init --force to ignore
this warning (but this will erase your run.py) or set hooks manually.

init has two arguments:

• --env which enable to specifiy another environment where the mlflow.yml should be created (e.g, base)

• --force which overrides the mlflow.yml if it already exists and replaces it with the default one. Use it with
caution!

8.4.2 ui

kedro mlflow ui: this command opens the mlflow UI (basically launches the mlflow ui command)

ui accepts the port and host arguments of mlflow ui command. The default values used will be the ones defined in
the mlflow.yml configuration file under the ui.

If you provide the arguments at runtime, they wil take priority over the mlflow.yml, e.g. if you have:

mlflow.yml
ui:

localhost: "0.0.0.0"
port: "5001"

then

kedro mlflow ui --port=5002

will open the ui on port 5002.

8.4.3 modelify

kedro mlflow modelify: this command converts a kedro pipeline to a mlflow model and logs it in mlflow. It enables
distributing the kedro pipeline as a standalone model and leverages all mlflow serving capabilities (as an API).

modelify accepts the following arguments :

• --pipeline, -p: The name of the kedro pipeline name registered in pipeline_registry.py that you want
to convert to a mlflow model.

• --input-name, -i: The name of the kedro dataset (in catalog.yml) which is the input of your pipeline. It
contains the data to predict on.

• --infer-signature : A boolean which indicates if the signature of the input data should be inferred for mlflow
or not.

• --infer-input-example : A boolean which indicates if the input_example of the input data should be inferred
for mlflow or not

8.4. Cli commands 67

https://www.mlflow.org/docs/latest/cli.html#mlflow-ui

kedro-mlflow, Release 0.12.0

• --run-id, -r : The id of the mlflow run where the model will be logged. If unspecified, the command creates
a new run.

• --run-name: The name of the mlflow run where the model will be logged. Defaults to "modelify".

• --copy-mode : The copy mode to use when replacing each dataset by a MemoryDataset. Either a string (applied
all datasets) or a dict mapping each dataset to a copy_mode.

• --artifact-path" : The artifact path of mlflow.pyfunc.log_model, see
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model

• --code-path : The code path of mlflow.pyfunc.log_model, see https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model

• --conda-env : “The conda environment of mlflow.pyfunc.log_model, see
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model

• --registered-model-name : The registered_model_name of mlflow.pyfunc.log_model, see
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model

• --await-registration-for: The await_registration_for of mlflow.pyfunc.log_model, see
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model*

• --pip-requirements : The pip_requirements of mlflow.pyfunc.log_model, see
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model

• --extra-pip-requirements : The extra_pip_requirements of mlflow.pyfunc.log_model, see
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model

8.5 Configuration

The python objecti is KedroMlflowConfig and it can be filled through mlflow.yml.

More details are coming soon.

68 Chapter 8. Introduction

CHAPTER

NINE

KEDRO_MLFLOW PACKAGE

9.1 Datasets

9.1.1 Artifact DataSet

class kedro_mlflow.io.artifacts.mlflow_artifact_dataset.MlflowArtifactDataset(dataset: str |
Dict, run_id:
str = None,
artifact_path:
str = None,
credentials:
Dict[str, Any]
= None)

Bases: AbstractVersionedDataset

This class is a wrapper for any kedro AbstractDataset. It decorates their save method to log the dataset in mlflow
when save is called.

9.1.2 Metrics DataSet

class kedro_mlflow.io.metrics.mlflow_metric_dataset.MlflowMetricDataset(key: str = None,
run_id: str = None,
load_args: Dict[str,
Any] = None,
save_args: Dict[str,
Any] = None)

Bases: MlflowAbstractMetricDataset

DEFAULT_SAVE_MODE = 'overwrite'

SUPPORTED_SAVE_MODES = {'append', 'overwrite'}

__init__(key: str = None, run_id: str = None, load_args: Dict[str, Any] = None, save_args: Dict[str, Any]
= None)

Initialise MlflowMetricDataset. :param run_id: The ID of the mlflow run where the metric should be logged
:type run_id: str

69

kedro-mlflow, Release 0.12.0

class kedro_mlflow.io.metrics.mlflow_metric_history_dataset.MlflowMetricHistoryDataset(key:
str
=
None,
run_id:
str
=
None,
load_args:
Dict[str,
Any]
=
None,
save_args:
Dict[str,
Any]
=
None)

Bases: MlflowAbstractMetricDataset

__init__(key: str = None, run_id: str = None, load_args: Dict[str, Any] = None, save_args: Dict[str, Any]
= None)

Initialise MlflowMetricDataset. :param run_id: The ID of the mlflow run where the metric should be logged
:type run_id: str

9.1.3 Models DataSet

class kedro_mlflow.io.models.mlflow_abstract_model_dataset.MlflowAbstractModelDataSet(filepath:
str,
fla-
vor:
str,
py-
func_workflow:
str |
None
=
None,
load_args:
Dict[str,
Any]
=
None,
save_args:
Dict[str,
Any]
=
None,
ver-
sion:
Ver-
sion
=
None)

70 Chapter 9. kedro_mlflow package

kedro-mlflow, Release 0.12.0

Bases: AbstractVersionedDataset

Abstract mother class for model datasets.

__init__(filepath: str, flavor: str, pyfunc_workflow: str | None = None, load_args: Dict[str, Any] = None,
save_args: Dict[str, Any] = None, version: Version = None)→ None

Initialize the Kedro MlflowAbstractModelDataSet.

Parameters are passed from the Data Catalog.

During save, the model is first logged to MLflow. During load, the model is pulled from MLflow run with
run_id.

Parameters
• filepath (str) – Path to store the dataset locally.

• flavor (str) – Built-in or custom MLflow model flavor module. Must be Python-
importable.

• pyfunc_workflow (str, optional) – Either python_model or loader_module. See
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#workflows.

• load_args (Dict[str, Any], optional) – Arguments to load_model function from
specified flavor. Defaults to {}.

• save_args (Dict[str, Any], optional) – Arguments to log_model function from
specified flavor. Defaults to {}.

• version (Version, optional) – Specific version to load.

Raises
DatasetError – When passed flavor does not exist.

9.1. Datasets 71

https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#workflows

kedro-mlflow, Release 0.12.0

class kedro_mlflow.io.models.mlflow_model_tracking_dataset.MlflowModelTrackingDataset(flavor:
str,
run_id:
str |
None
=
None,
arti-
fact_path:
str |
None
=
'model',
py-
func_workflow:
str |
None
=
None,
load_args:
Dict[str,
Any]
|
None
=
None,
save_args:
Dict[str,
Any]
|
None
=
None)

Bases: MlflowAbstractModelDataSet

Wrapper for saving, logging and loading for all MLflow model flavor.

__init__(flavor: str, run_id: str | None = None, artifact_path: str | None = 'model', pyfunc_workflow: str |
None = None, load_args: Dict[str, Any] | None = None, save_args: Dict[str, Any] | None = None)
→ None

Initialize the Kedro MlflowModelDataSet.

Parameters are passed from the Data Catalog.

During save, the model is first logged to MLflow. During load, the model is pulled from MLflow run with
run_id.

Parameters
• flavor (str) – Built-in or custom MLflow model flavor module. Must be Python-

importable.

• run_id (Optional[str], optional) – MLflow run ID to use to load the model from
or save the model to. Defaults to None.

• artifact_path (str, optional) – the run relative path to the model.

72 Chapter 9. kedro_mlflow package

kedro-mlflow, Release 0.12.0

• pyfunc_workflow (str, optional) – Either python_model or loader_module. See
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#workflows.

• load_args (Dict[str, Any], optional) – Arguments to load_model function from
specified flavor. Defaults to None.

• save_args (Dict[str, Any], optional) – Arguments to log_model function from
specified flavor. Defaults to None.

Raises
DatasetError – When passed flavor does not exist.

property model_uri

class kedro_mlflow.io.models.mlflow_model_local_filesystem_dataset.MlflowModelLocalFileSystemDataset(filepath:
str,
fla-
vor:
str,
py-
func_workflow:
str
|
None
=
None,
load_args:
Dict[str,
Any]
=
None,
save_args:
Dict[str,
Any]
=
None,
log_args:
Dict[str,
Any]
=
None,
ver-
sion:
Ver-
sion
=
None)

Bases: MlflowAbstractModelDataSet

Wrapper for saving, logging and loading for all MLflow model flavor.

__init__(filepath: str, flavor: str, pyfunc_workflow: str | None = None, load_args: Dict[str, Any] = None,
save_args: Dict[str, Any] = None, log_args: Dict[str, Any] = None, version: Version = None)→
None

Initialize the Kedro MlflowModelDataSet.

Parameters are passed from the Data Catalog.

9.1. Datasets 73

https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#workflows

kedro-mlflow, Release 0.12.0

During save, the model is saved locally at filepath During load, the model is loaded from the local filepath.

Parameters
• flavor (str) – Built-in or custom MLflow model flavor module. Must be Python-

importable.

• filepath (str) – Path to store the dataset locally.

• pyfunc_workflow (str, optional) – Either python_model or loader_module. See
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#workflows.

• load_args (Dict[str, Any], optional) – Arguments to load_model function from
specified flavor. Defaults to None.

• save_args (Dict[str, Any], optional) – Arguments to save_model function from
specified flavor. Defaults to None.

• version (Version, optional) – Kedro version to use. Defaults to None.

Raises
DatasetError – When passed flavor does not exist.

class kedro_mlflow.io.models.mlflow_model_registry_dataset.MlflowModelRegistryDataset(model_name:
str,
stage_or_version:
str |
int
=
'lat-
est',
fla-
vor:
str |
None
=
'mlflow.pyfunc',
py-
func_workflow:
str |
None
=
'python_model',
load_args:
Dict[str,
Any]
|
None
=
None)

Bases: MlflowAbstractModelDataSet

Wrapper for saving, logging and loading for all MLflow model flavor.

__init__(model_name: str, stage_or_version: str | int = 'latest', flavor: str | None = 'mlflow.pyfunc',
pyfunc_workflow: str | None = 'python_model', load_args: Dict[str, Any] | None = None)→ None

Initialize the Kedro MlflowModelRegistryDataset.

Parameters are passed from the Data Catalog.

74 Chapter 9. kedro_mlflow package

https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#workflows

kedro-mlflow, Release 0.12.0

During “load”, the model is pulled from MLflow model registry by its name. “save” is not supported.

Parameters
• model_name (str) – The name of the registered model is the mlflow registry

• stage_or_version (str) – A valid stage (either “staging” or “production”) or version
number for the registred model. Default to “latest” which fetch the last version and the
higher “stage” available.

• flavor (str) – Built-in or custom MLflow model flavor module. Must be Python-
importable.

• pyfunc_workflow (str, optional) – Either python_model or loader_module. See
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#workflows.

• load_args (Dict[str, Any], optional) – Arguments to load_model function from
specified flavor. Defaults to None.

Raises
DatasetError – When passed flavor does not exist.

9.2 CLI

9.2.1 init

Updates the template of a kedro project. Running this command is mandatory to use kedro-mlflow. This adds
“conf/base/mlflow.yml”: This is a configuration file used for run parametrization when calling “kedro run” command.

init [OPTIONS]

Options

-e, --env <env>

The name of the kedro environment where the ‘mlflow.yml’ should be created. Default to ‘local’

-f, --force

Update the template without any checks.

-s, --silent

Should message be logged when files are modified?

9.2.2 ui

Opens the mlflow user interface with the project-specific settings of mlflow.yml. This interface enables to browse and
compares runs.

ui [OPTIONS]

9.2. CLI 75

https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#workflows

kedro-mlflow, Release 0.12.0

Options

-e, --env <env>

The environment within conf folder we want to retrieve.

-p, --port <port>

The port to listen on

-h, --host <host>

The network address to listen on (default: 127.0.0.1). Use 0.0.0.0 to bind to all addresses if you want to access
the tracking server from other machines.

9.2.3 modelify

Export a kedro pipeline as a mlflow model for serving

modelify [OPTIONS]

Options

-p, --pipeline <pipeline_name>

Required A valid kedro pipeline name registered in pipeline_registry.py. Available pipelines can be listed with
in ‘kedro registry list’

-i, --input-name <input_name>

Required The name of kedro dataset which contains the data to predict on

--infer-signature

Should the signature of the input data be inferred for mlflow?

--infer-input-example

Should the input_example of the input data be inferred for mlflow?

-r, --run-id <run_id>

The id of the mlflow run where the model will be logged. If unspecified, the command creates a new run.

--run-name <run_name>

The name of the mlflow run where the model will be logged. Defaults to ‘modelify’.

--copy-mode <copy_mode>

The copy mode to use when replacing each dataset by a MemoryDataset. Either a string (applied all datasets) or
a dict mapping each dataset to a copy_mode.

--artifact-path <artifact_path>

The artifact path of mlflow.pyfunc.log_model, see https://www.mlflow.org/docs/latest/python_api/mlflow.
pyfunc.html#mlflow.pyfunc.log_model

--code-path <code_path>

The code path of mlflow.pyfunc.log_model, see https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.
html#mlflow.pyfunc.log_model

--conda-env <conda_env>

The conda environment of mlflow.pyfunc.log_model, see https://www.mlflow.org/docs/latest/python_api/
mlflow.pyfunc.html#mlflow.pyfunc.log_model

76 Chapter 9. kedro_mlflow package

https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model

kedro-mlflow, Release 0.12.0

--registered-model-name <registered_model_name>

The registered_model_name of mlflow.pyfunc.log_model, see https://www.mlflow.org/docs/latest/python_api/
mlflow.pyfunc.html#mlflow.pyfunc.log_model

--await-registration-for <await_registration_for>

The await_registration_for of mlflow.pyfunc.log_model, see https://www.mlflow.org/docs/latest/python_api/
mlflow.pyfunc.html#mlflow.pyfunc.log_model

--pip-requirements <pip_requirements>

The pip_requirements of mlflow.pyfunc.log_model, see https://www.mlflow.org/docs/latest/python_api/mlflow.
pyfunc.html#mlflow.pyfunc.log_model

--extra-pip-requirements <extra_pip_requirements>

The extra_pip_requirements of mlflow.pyfunc.log_model, see https://www.mlflow.org/docs/latest/python_api/
mlflow.pyfunc.html#mlflow.pyfunc.log_model

9.3 Pipelines

exception kedro_mlflow.pipeline.pipeline_ml.KedroMlflowPipelineMLError

Bases: Exception

Error raised when the KedroPipelineModel construction fails

class kedro_mlflow.pipeline.pipeline_ml.PipelineML(nodes: Iterable[Node | Pipeline], *args, tags: str
| Iterable[str] | None = None, inference: Pipeline,
input_name: str, kpm_kwargs: Dict[str, str] |
None = None, log_model_kwargs: Dict[str, str] |
None = None)

Bases: Pipeline

IMPORTANT NOTE : THIS CLASS IS NOT INTENDED TO BE USED DIRECTLY IN A KEDRO PROJECT.
YOU SHOULD USE pipeline_ml_factory FUNCTION FOR MODULAR PIPELINE WHICH IS MORE
FLEXIBLE AND USER FRIENDLY. SEE INSERT_DOC_URL

A PipelineML is a kedro Pipeline which we assume is a “training” (in the machine learning way) pipeline.
Basically, “training” is a higher order function (it generates another function). It implies that: - the outputs of
this pipeline are considered as “fitted models”, i.e. inputs of another inference pipeline (it is very likely that there
are several outputs because we need to store any object that depends on the train data (e.g encoders, binarizers,
vectorizer, machine learning models. . .) - These outputs will feed another “inference” pipeline (to be used for
prediction purpose) whose inputs

are the outputs of the “training” pipeline, except for one of them (the new data to predict).

This class enables to “link” a training pipeline and an inference pipeline in order to package them in
mlflow easily. The goal is to call the MlflowHook hook after a PipelineMl is called in order to trigger
mlflow packaging.

KPM_KWARGS_DEFAULT = {}

LOG_MODEL_KWARGS_DEFAULT = {'artifact_path': 'model', 'signature': 'auto'}

__init__(nodes: Iterable[Node | Pipeline], *args, tags: str | Iterable[str] | None = None, inference:
Pipeline, input_name: str, kpm_kwargs: Dict[str, str] | None = None, log_model_kwargs: Dict[str,
str] | None = None)

Store all necessary information for calling mlflow.log_model in the pipeline.

9.3. Pipelines 77

https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model

kedro-mlflow, Release 0.12.0

Parameters
• nodes (Iterable[Union[Node, Pipeline]]) – The `node`s of the training pipeline.

• tags (Union[str, Iterable[str]], optional) – Optional set of tags to be applied
to all the pipeline nodes. Defaults to None.

• inference (Pipeline) – A Pipeline object which will be stored in mlflow and use the
output(s) of the training pipeline (namely, the model) to predict the outcome.

• input_name (str, optional) – The name of the dataset in the catalog.yml which the
model’s user must provide for prediction (i.e. the data). Defaults to None.

• kpm_kwargs – extra arguments to be passed to KedroPipelineModel when the PipelineML
object is automatically saved at the end of a run. This includes:

– copy_mode: the copy_mode to be used for underlying dataset

when loaded in memory - runner: the kedro runner to run the model with

• log_model_kwargs –

extra arguments to be passed to mlflow.pyfunc.log_model, e.g.:
– ”signature” accepts an extra “auto” which automatically infer the signature

based on “input_name” dataset

filter(tags: Iterable[str] = None, from_nodes: Iterable[str] = None, to_nodes: Iterable[str] = None,
node_names: Iterable[str] = None, from_inputs: Iterable[str] = None, to_outputs: Iterable[str] =
None, node_namespace: str = None)→ Pipeline

Creates a new Pipeline object with the nodes that meet all of the specified filtering conditions.

The new pipeline object is the intersection of pipelines that meet each filtering condition. This is distinct
from chaining multiple filters together.

Parameters
• tags – A list of node tags which should be used to lookup the nodes of the new
Pipeline.

• from_nodes – A list of node names which should be used as a starting point of the
new Pipeline.

• to_nodes – A list of node names which should be used as an end point of the new
Pipeline.

• node_names – A list of node names which should be selected for the new Pipeline.

• from_inputs – A list of inputs which should be used as a starting point of the new
Pipeline

• to_outputs – A list of outputs which should be the final outputs of the new
Pipeline.

• node_namespace – One node namespace which should be used to select nodes in the
new Pipeline.

Returns
A new Pipeline object with nodes that meet all of the specified

filtering conditions.

Raises
ValueError – The filtered Pipeline has no nodes.

78 Chapter 9. kedro_mlflow package

kedro-mlflow, Release 0.12.0

Example:

>>> pipeline = Pipeline(
>>> [
>>> node(func, "A", "B", name="node1"),
>>> node(func, "B", "C", name="node2"),
>>> node(func, "C", "D", name="node3"),
>>>]
>>>)
>>> pipeline.filter(node_names=["node1", "node3"], from_inputs=["A"])
>>> # Gives a new pipeline object containing node1 and node3.

from_inputs(*inputs: str)→ PipelineML
Create a new Pipeline object with the nodes which depend directly or transitively on the provided inputs.
If provided a name, but no format, for a transcoded input, it includes all the nodes that use inputs with that
name, otherwise it matches to the fully-qualified name only (i.e. name@format).

Parameters
*inputs – A list of inputs which should be used as a starting point of the new Pipeline

Raises
ValueError – Raised when any of the given inputs do not exist in the Pipeline object.

Returns
A new Pipeline object, containing a subset of the

nodes of the current one such that only nodes depending directly or transitively on the
provided inputs are being copied.

from_nodes(*node_names: str)→ PipelineML
Create a new Pipeline object with the nodes which depend directly or transitively on the provided nodes.

Parameters
*node_names – A list of node_names which should be used as a starting point of the new
Pipeline.

Raises
ValueError – Raised when any of the given names do not exist in the Pipeline object.

Returns
A new Pipeline object, containing a subset of the nodes of

the current one such that only nodes depending directly or transitively on the provided
nodes are being copied.

property inference: str

property input_name: str

only_nodes(*node_names: str)→ Pipeline
Create a new Pipeline which will contain only the specified nodes by name.

Parameters
*node_names – One or more node names. The returned Pipelinewill only contain these
nodes.

Raises
ValueError – When some invalid node name is given.

Returns
A new Pipeline, containing only nodes.

9.3. Pipelines 79

mailto:name@format

kedro-mlflow, Release 0.12.0

only_nodes_with_inputs(*inputs: str)→ PipelineML
Create a new Pipeline object with the nodes which depend directly on the provided inputs. If provided
a name, but no format, for a transcoded input, it includes all the nodes that use inputs with that name,
otherwise it matches to the fully-qualified name only (i.e. name@format).

Parameters
*inputs – A list of inputs which should be used as a starting point of the new Pipeline.

Raises
ValueError – Raised when any of the given inputs do not exist in the Pipeline object.

Returns
A new Pipeline object, containing a subset of the

nodes of the current one such that only nodes depending directly on the provided inputs
are being copied.

only_nodes_with_namespace(node_namespace: str)→ Pipeline
Creates a new Pipeline containing only nodes with the specified namespace.

Parameters
node_namespace – One node namespace.

Raises
ValueError – When pipeline contains no nodes with the specified namespace.

Returns
A new Pipeline containing nodes with the specified namespace.

only_nodes_with_outputs(*outputs: str)→ PipelineML
Create a new Pipeline object with the nodes which are directly required to produce the provided outputs.
If provided a name, but no format, for a transcoded dataset, it includes all the nodes that output to that
name, otherwise it matches to the fully-qualified name only (i.e. name@format).

Parameters
*outputs – A list of outputs which should be the final outputs of the new Pipeline.

Raises
ValueError – Raised when any of the given outputs do not exist in the Pipeline object.

Returns
A new Pipeline object, containing a subset of the nodes of the current one such that only
nodes which are directly required to produce the provided outputs are being copied.

only_nodes_with_tags(*tags: str)→ PipelineML
Creates a new Pipeline object with the nodes which contain any of the provided tags. The resulting
Pipeline is empty if no tags are provided.

Parameters
*tags – A list of node tags which should be used to lookup the nodes of the new Pipeline.

Returns
A new Pipeline object, containing a subset of the

nodes of the current one such that only nodes containing any of the tags provided are
being copied.

Return type
Pipeline

80 Chapter 9. kedro_mlflow package

mailto:name@format
mailto:name@format

kedro-mlflow, Release 0.12.0

tag(tags: str | Iterable[str])→ PipelineML
Tags all the nodes in the pipeline.

Parameters
tags – The tags to be added to the nodes.

Returns
New Pipeline object with nodes tagged.

to_nodes(*node_names: str)→ PipelineML
Create a new Pipeline object with the nodes required directly or transitively by the provided nodes.

Parameters
*node_names – A list of node_names which should be used as an end point of the new
Pipeline.

Raises
ValueError – Raised when any of the given names do not exist in the Pipeline object.

Returns
A new Pipeline object, containing a subset of the nodes of the

current one such that only nodes required directly or transitively by the provided nodes
are being copied.

to_outputs(*outputs: str)→ PipelineML
Create a new Pipeline object with the nodes which are directly or transitively required to produce the
provided outputs. If provided a name, but no format, for a transcoded dataset, it includes all the nodes that
output to that name, otherwise it matches to the fully-qualified name only (i.e. name@format).

Parameters
*outputs – A list of outputs which should be the final outputs of the new Pipeline.

Raises
ValueError – Raised when any of the given outputs do not exist in the Pipeline object.

Returns
A new Pipeline object, containing a subset of the nodes of the current one such that only
nodes which are directly or transitively required to produce the provided outputs are being
copied.

property training: Pipeline

kedro_mlflow.pipeline.pipeline_ml_factory.pipeline_ml_factory(training: Pipeline, inference:
Pipeline, input_name: str = None,
kpm_kwargs=None,
log_model_kwargs=None)→
PipelineML

This function is a helper to create PipelineML object directly from two Kedro Pipelines (one of training and one
of inference) .

Parameters
• training (Pipeline) – The Pipeline object that creates all mlflow artifacts for prediction

(the model, but also encoders, binarizers, tokenizers. . .). These artifacts must be persisted
in the catalog.yml.

• inference (Pipeline) – A Pipeline object which will be stored in mlflow and use the
output(s) of the training pipeline (namely, the model) to predict the outcome.

9.3. Pipelines 81

mailto:name@format

kedro-mlflow, Release 0.12.0

• input_name (str, optional) – The name of the dataset in the catalog.yml which the
model’s user must provide for prediction (i.e. the data). Defaults to None.

• kpm_kwargs – extra arguments to be passed to KedroPipelineModel when the PipelineML
object is automatically saved at the end of a run. This includes:

– copy_mode: the copy_mode to be used for underlying dataset

when loaded in memory - runner: the kedro runner to run the model with

• logging_kwargs – extra arguments to be passed to mlflow.pyfunc.log_model when the
PipelineML object is automatically saved at the end of a run. See mlflow documentation to
see all available options: https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.
html#mlflow.pyfunc.log_model

Returns
A PipelineML which is automatically

discovered by the MlflowHook and contains all the information for logging the inference
pipeline as a Mlflow Model.

Return type
PipelineML

9.4 Custom Mlflow Models

class kedro_mlflow.mlflow.kedro_pipeline_model.KedroPipelineModel(pipeline: Pipeline, catalog:
DataCatalog, input_name:
str, runner: AbstractRunner |
None = None, copy_mode:
Dict[str, str] | str | None =
'assign')

Bases: PythonModel

__init__(pipeline: Pipeline, catalog: DataCatalog, input_name: str, runner: AbstractRunner | None =
None, copy_mode: Dict[str, str] | str | None = 'assign')

[summary]

Parameters
• pipeline (Pipeline) – A Kedro Pipeline object to

• objects. (store as a Mlflow Model. Also works with kedro_mlflow
PipelineML) –

• catalog (The copy_mode of each DataSet of the) – The DataCatalog asso-
ciated

• PipelineMl (to the) –

• runner (Optional[AbstractRunner], optional) – The kedro

• if (AbstractRunner to use. Defaults to SequentialRunner) –

• None. –

• copy_mode (Optional[Union[Dict[str,str], str]]) –

• catalog –

• memory. (when reconstructing the DataCatalog in) –

82 Chapter 9. kedro_mlflow package

https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.log_model

kedro-mlflow, Release 0.12.0

• "assign". (The default is) –

• either (You can pass) –

– None to use Kedro default mode for each dataset

– a single string (“deepcopy”, “copy” and “assign”)

to apply to all datasets - a dictionary with (dataset name, copy_mode) key/values pairs.
The associated mode must be a valid kedro mode (“deepcopy”, “copy” and “assign”)
for each. Defaults to None.

property copy_mode

extract_pipeline_artifacts(parameters_saving_folder: Path | None = None)

load_context(context)
Loads artifacts from the specified PythonModelContext that can be used by predict() when evaluat-
ing inputs. When loading an MLflow model with load_model(), this method is called as soon as the
PythonModel is constructed.

The same PythonModelContext will also be available during calls to predict(), but it may be more
efficient to override this method and load artifacts from the context at model load time.

Parameters
context – A PythonModelContext instance containing artifacts that the model can use
to perform inference.

predict(context, model_input)
Evaluates a pyfunc-compatible input and produces a pyfunc-compatible output. For more information
about the pyfunc input/output API, see the pyfunc-inference-api.

Parameters
• context – A PythonModelContext instance containing artifacts that the model can

use to perform inference.

• model_input – A pyfunc-compatible input for the model to evaluate.

• params – Additional parameters to pass to the model for inference.

Note: Experimental: This parameter may change or be removed in a future release
without warning.

exception kedro_mlflow.mlflow.kedro_pipeline_model.KedroPipelineModelError

Bases: Exception

Error raised when the KedroPipelineModel construction fails

9.4. Custom Mlflow Models 83

kedro-mlflow, Release 0.12.0

9.5 Configuration

class kedro_mlflow.config.kedro_mlflow_config.DictParamsOptions(*, flatten: bool = False,
recursive: bool = True, sep: str
= '.')

Bases: BaseModel

class Config

Bases: object

extra = 'forbid'

flatten: bool

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [Config-
Dict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'flatten':
FieldInfo(annotation=bool, required=False, default=False,
metadata=[Strict(strict=True)]), 'recursive': FieldInfo(annotation=bool,
required=False, default=True, metadata=[Strict(strict=True)]), 'sep':
FieldInfo(annotation=str, required=False, default='.')}

Metadata about the fields defined on the model, mapping of field names to [Field-
Info][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

recursive: bool

sep: str

class kedro_mlflow.config.kedro_mlflow_config.DisableTrackingOptions(*, pipelines: List[str] =
[])

Bases: BaseModel

class Config

Bases: object

extra = 'forbid'

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [Config-
Dict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'pipelines':
FieldInfo(annotation=List[str], required=False, default=[])}

Metadata about the fields defined on the model, mapping of field names to [Field-
Info][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

pipelines: List[str]

class kedro_mlflow.config.kedro_mlflow_config.ExperimentOptions(*, name: str = 'Default',
restore_if_deleted: bool = True)

Bases: BaseModel

84 Chapter 9. kedro_mlflow package

kedro-mlflow, Release 0.12.0

class Config

Bases: object

extra = 'forbid'

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [Config-
Dict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'name': FieldInfo(annotation=str,
required=False, default='Default'), 'restore_if_deleted':
FieldInfo(annotation=bool, required=False, default=True,
metadata=[Strict(strict=True)])}

Metadata about the fields defined on the model, mapping of field names to [Field-
Info][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

model_post_init(__context: Any)→ None
This function is meant to behave like a BaseModel method to initialise private attributes.

It takes context as an argument since that’s what pydantic-core passes when calling it.

Parameters
• self – The BaseModel instance.

• __context – The context.

name: str

restore_if_deleted: bool

class kedro_mlflow.config.kedro_mlflow_config.KedroMlflowConfig(*, server: MlflowServerOptions
= MlflowServerOp-
tions(mlflow_tracking_uri=None,
mlflow_registry_uri=None,
credentials=None, re-
quest_header_provider=RequestHeaderProviderOptions(type=None,
pass_context=False,
init_kwargs={})), tracking:
MlflowTrackingOptions =
MlflowTrackingOp-
tions(disable_tracking=DisableTrackingOptions(pipelines=[]),
experi-
ment=ExperimentOptions(name='Default',
restore_if_deleted=True),
run=RunOptions(id=None,
name=None, nested=True),
params=MlflowParamsOptions(dict_params=DictParamsOptions(flatten=False,
recursive=True, sep='.'),
long_params_strategy='fail')),
ui: UiOptions =
UiOptions(port='5000',
host='127.0.0.1'))

Bases: BaseModel

9.5. Configuration 85

kedro-mlflow, Release 0.12.0

class Config

Bases: object

extra = 'forbid'

validate_assignment = True

model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'validate_assignment':
True}

Configuration for the model, should be a dictionary conforming to [Config-
Dict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'server':
FieldInfo(annotation=MlflowServerOptions, required=False,
default=MlflowServerOptions(mlflow_tracking_uri=None, mlflow_registry_uri=None,
credentials=None, request_header_provider=RequestHeaderProviderOptions(type=None,
pass_context=False, init_kwargs={}))), 'tracking':
FieldInfo(annotation=MlflowTrackingOptions, required=False,
default=MlflowTrackingOptions(disable_tracking=DisableTrackingOptions(pipelines=[]),
experiment=ExperimentOptions(name='Default', restore_if_deleted=True),
run=RunOptions(id=None, name=None, nested=True),
params=MlflowParamsOptions(dict_params=DictParamsOptions(flatten=False,
recursive=True, sep='.'), long_params_strategy='fail'))), 'ui':
FieldInfo(annotation=UiOptions, required=False, default=UiOptions(port='5000',
host='127.0.0.1'))}

Metadata about the fields defined on the model, mapping of field names to [Field-
Info][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

server: MlflowServerOptions

setup(context)
Setup all the mlflow configuration

tracking: MlflowTrackingOptions

ui: UiOptions

class kedro_mlflow.config.kedro_mlflow_config.MlflowParamsOptions(*, dict_params:
DictParamsOptions = Dict-
ParamsOptions(flatten=False,
recursive=True, sep='.'),
long_params_strategy:
Literal['fail', 'truncate', 'tag']
= 'fail')

Bases: BaseModel

class Config

Bases: object

extra = 'forbid'

dict_params: DictParamsOptions

long_params_strategy: Literal['fail', 'truncate', 'tag']

86 Chapter 9. kedro_mlflow package

kedro-mlflow, Release 0.12.0

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [Config-
Dict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'dict_params':
FieldInfo(annotation=DictParamsOptions, required=False,
default=DictParamsOptions(flatten=False, recursive=True, sep='.')),
'long_params_strategy': FieldInfo(annotation=Literal['fail', 'truncate', 'tag'],
required=False, default='fail')}

Metadata about the fields defined on the model, mapping of field names to [Field-
Info][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

class kedro_mlflow.config.kedro_mlflow_config.MlflowServerOptions(*, mlflow_tracking_uri: str |
None = None,
mlflow_registry_uri: str |
None = None, credentials: str
| None = None,
request_header_provider: Re-
questHeaderProviderOptions
= RequestHeaderProviderOp-
tions(type=None,
pass_context=False,
init_kwargs={}))

Bases: BaseModel

class Config

Bases: object

extra = 'forbid'

credentials: str | None

mlflow_registry_uri: str | None

mlflow_tracking_uri: str | None

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [Config-
Dict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'credentials':
FieldInfo(annotation=Union[str, NoneType], required=False), 'mlflow_registry_uri':
FieldInfo(annotation=Union[str, NoneType], required=False), 'mlflow_tracking_uri':
FieldInfo(annotation=Union[str, NoneType], required=False),
'request_header_provider': FieldInfo(annotation=RequestHeaderProviderOptions,
required=False, default=RequestHeaderProviderOptions(type=None, pass_context=False,
init_kwargs={}))}

Metadata about the fields defined on the model, mapping of field names to [Field-
Info][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

model_post_init(__context: Any)→ None
This function is meant to behave like a BaseModel method to initialise private attributes.

It takes context as an argument since that’s what pydantic-core passes when calling it.

9.5. Configuration 87

kedro-mlflow, Release 0.12.0

Parameters
• self – The BaseModel instance.

• __context – The context.

request_header_provider: RequestHeaderProviderOptions

class kedro_mlflow.config.kedro_mlflow_config.MlflowTrackingOptions(*, disable_tracking:
DisableTrackingOptions =
DisableTrackingOp-
tions(pipelines=[]),
experiment:
ExperimentOptions =
ExperimentOp-
tions(name='Default',
restore_if_deleted=True),
run: RunOptions =
RunOptions(id=None,
name=None, nested=True),
params:
MlflowParamsOptions =
MlflowParamsOp-
tions(dict_params=DictParamsOptions(flatten=False,
recursive=True, sep='.'),
long_params_strategy='fail'))

Bases: BaseModel

class Config

Bases: object

extra = 'forbid'

disable_tracking: DisableTrackingOptions

experiment: ExperimentOptions

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [Config-
Dict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'disable_tracking':
FieldInfo(annotation=DisableTrackingOptions, required=False,
default=DisableTrackingOptions(pipelines=[])), 'experiment':
FieldInfo(annotation=ExperimentOptions, required=False,
default=ExperimentOptions(name='Default', restore_if_deleted=True)), 'params':
FieldInfo(annotation=MlflowParamsOptions, required=False,
default=MlflowParamsOptions(dict_params=DictParamsOptions(flatten=False,
recursive=True, sep='.'), long_params_strategy='fail')), 'run':
FieldInfo(annotation=RunOptions, required=False, default=RunOptions(id=None,
name=None, nested=True))}

Metadata about the fields defined on the model, mapping of field names to [Field-
Info][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

params: MlflowParamsOptions

88 Chapter 9. kedro_mlflow package

kedro-mlflow, Release 0.12.0

run: RunOptions

class kedro_mlflow.config.kedro_mlflow_config.RequestHeaderProviderOptions(*, type: str | None
= None,
pass_context: bool
= False,
init_kwargs:
Dict[str, str] = {})

Bases: BaseModel

class Config

Bases: object

arbitrary_types_allowed = 'allowed'

extra = 'forbid'

init_kwargs: Dict[str, str]

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': 'allowed',
'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [Config-
Dict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'init_kwargs':
FieldInfo(annotation=Dict[str, str], required=False, default={}), 'pass_context':
FieldInfo(annotation=bool, required=False, default=False), 'type':
FieldInfo(annotation=Union[str, NoneType], required=False)}

Metadata about the fields defined on the model, mapping of field names to [Field-
Info][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

pass_context: bool

type: str | None

class kedro_mlflow.config.kedro_mlflow_config.RunOptions(*, id: str | None = None, name: str | None
= None, nested: bool = True)

Bases: BaseModel

class Config

Bases: object

extra = 'forbid'

id: str | None

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [Config-
Dict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'id':
FieldInfo(annotation=Union[str, NoneType], required=False), 'name':
FieldInfo(annotation=Union[str, NoneType], required=False), 'nested':
FieldInfo(annotation=bool, required=False, default=True,
metadata=[Strict(strict=True)])}

9.5. Configuration 89

kedro-mlflow, Release 0.12.0

Metadata about the fields defined on the model, mapping of field names to [Field-
Info][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

name: str | None

nested: bool

class kedro_mlflow.config.kedro_mlflow_config.UiOptions(*, port: str = '5000', host: str =
'127.0.0.1')

Bases: BaseModel

class Config

Bases: object

extra = 'forbid'

host: str

model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}

Configuration for the model, should be a dictionary conforming to [Config-
Dict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'host': FieldInfo(annotation=str,
required=False, default='127.0.0.1'), 'port': FieldInfo(annotation=str,
required=False, default='5000')}

Metadata about the fields defined on the model, mapping of field names to [Field-
Info][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

port: str

9.6 Notebook

9.7 Hooks

9.7.1 Node Hook

9.7.2 Pipeline Hook

90 Chapter 9. kedro_mlflow package

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

91

kedro-mlflow, Release 0.12.0

92 Chapter 10. Indices and tables

PYTHON MODULE INDEX

k
kedro_mlflow.config.kedro_mlflow_config, 84
kedro_mlflow.io.artifacts.mlflow_artifact_dataset,

69
kedro_mlflow.io.metrics.mlflow_metric_dataset,

69
kedro_mlflow.io.metrics.mlflow_metric_history_dataset,

69
kedro_mlflow.io.models.mlflow_abstract_model_dataset,

70
kedro_mlflow.io.models.mlflow_model_local_filesystem_dataset,

73
kedro_mlflow.io.models.mlflow_model_registry_dataset,

74
kedro_mlflow.io.models.mlflow_model_tracking_dataset,

71
kedro_mlflow.mlflow.kedro_pipeline_model, 82
kedro_mlflow.pipeline.pipeline_ml, 77
kedro_mlflow.pipeline.pipeline_ml_factory, 81

93

kedro-mlflow, Release 0.12.0

94 Python Module Index

INDEX

Symbols
__init__() (kedro_mlflow.io.metrics.mlflow_metric_dataset.MlflowMetricDataset

method), 69
__init__() (kedro_mlflow.io.metrics.mlflow_metric_history_dataset.MlflowMetricHistoryDataset

method), 70
__init__() (kedro_mlflow.io.models.mlflow_abstract_model_dataset.MlflowAbstractModelDataSet

method), 71
__init__() (kedro_mlflow.io.models.mlflow_model_local_filesystem_dataset.MlflowModelLocalFileSystemDataset

method), 73
__init__() (kedro_mlflow.io.models.mlflow_model_registry_dataset.MlflowModelRegistryDataset

method), 74
__init__() (kedro_mlflow.io.models.mlflow_model_tracking_dataset.MlflowModelTrackingDataset

method), 72
__init__() (kedro_mlflow.mlflow.kedro_pipeline_model.KedroPipelineModel

method), 82
__init__() (kedro_mlflow.pipeline.pipeline_ml.PipelineML

method), 77
--artifact-path

modelify command line option, 76
--await-registration-for

modelify command line option, 77
--code-path

modelify command line option, 76
--conda-env

modelify command line option, 76
--copy-mode

modelify command line option, 76
--env

init command line option, 75
ui command line option, 76

--extra-pip-requirements
modelify command line option, 77

--force
init command line option, 75

--host
ui command line option, 76

--infer-input-example
modelify command line option, 76

--infer-signature
modelify command line option, 76

--input-name
modelify command line option, 76

--pip-requirements
modelify command line option, 77

--pipeline
modelify command line option, 76

--port
ui command line option, 76

--registered-model-name
modelify command line option, 76

--run-id
modelify command line option, 76

--run-name
modelify command line option, 76

--silent
init command line option, 75

-e
init command line option, 75
ui command line option, 76

-f
init command line option, 75

-h
ui command line option, 76

-i
modelify command line option, 76

-p
modelify command line option, 76
ui command line option, 76

-r
modelify command line option, 76

-s
init command line option, 75

A
arbitrary_types_allowed (ke-

dro_mlflow.config.kedro_mlflow_config.RequestHeaderProviderOptions.Config
attribute), 89

C
copy_mode (kedro_mlflow.mlflow.kedro_pipeline_model.KedroPipelineModel

property), 83
credentials (kedro_mlflow.config.kedro_mlflow_config.MlflowServerOptions

attribute), 87

95

kedro-mlflow, Release 0.12.0

D
DEFAULT_SAVE_MODE (ke-

dro_mlflow.io.metrics.mlflow_metric_dataset.MlflowMetricDataset
attribute), 69

dict_params (kedro_mlflow.config.kedro_mlflow_config.MlflowParamsOptions
attribute), 86

DictParamsOptions (class in ke-
dro_mlflow.config.kedro_mlflow_config),
84

DictParamsOptions.Config (class in ke-
dro_mlflow.config.kedro_mlflow_config),
84

disable_tracking (ke-
dro_mlflow.config.kedro_mlflow_config.MlflowTrackingOptions
attribute), 88

DisableTrackingOptions (class in ke-
dro_mlflow.config.kedro_mlflow_config),
84

DisableTrackingOptions.Config (class in ke-
dro_mlflow.config.kedro_mlflow_config), 84

E
experiment (kedro_mlflow.config.kedro_mlflow_config.MlflowTrackingOptions

attribute), 88
ExperimentOptions (class in ke-

dro_mlflow.config.kedro_mlflow_config),
84

ExperimentOptions.Config (class in ke-
dro_mlflow.config.kedro_mlflow_config),
84

extra (kedro_mlflow.config.kedro_mlflow_config.DictParamsOptions.Config
attribute), 84

extra (kedro_mlflow.config.kedro_mlflow_config.DisableTrackingOptions.Config
attribute), 84

extra (kedro_mlflow.config.kedro_mlflow_config.ExperimentOptions.Config
attribute), 85

extra (kedro_mlflow.config.kedro_mlflow_config.KedroMlflowConfig.Config
attribute), 86

extra (kedro_mlflow.config.kedro_mlflow_config.MlflowParamsOptions.Config
attribute), 86

extra (kedro_mlflow.config.kedro_mlflow_config.MlflowServerOptions.Config
attribute), 87

extra (kedro_mlflow.config.kedro_mlflow_config.MlflowTrackingOptions.Config
attribute), 88

extra (kedro_mlflow.config.kedro_mlflow_config.RequestHeaderProviderOptions.Config
attribute), 89

extra (kedro_mlflow.config.kedro_mlflow_config.RunOptions.Config
attribute), 89

extra (kedro_mlflow.config.kedro_mlflow_config.UiOptions.Config
attribute), 90

extract_pipeline_artifacts() (ke-
dro_mlflow.mlflow.kedro_pipeline_model.KedroPipelineModel
method), 83

F
filter() (kedro_mlflow.pipeline.pipeline_ml.PipelineML

method), 78
flatten (kedro_mlflow.config.kedro_mlflow_config.DictParamsOptions

attribute), 84
from_inputs() (kedro_mlflow.pipeline.pipeline_ml.PipelineML

method), 79
from_nodes() (kedro_mlflow.pipeline.pipeline_ml.PipelineML

method), 79

H
host (kedro_mlflow.config.kedro_mlflow_config.UiOptions

attribute), 90

I
id (kedro_mlflow.config.kedro_mlflow_config.RunOptions

attribute), 89
inference (kedro_mlflow.pipeline.pipeline_ml.PipelineML

property), 79
init command line option

--env, 75
--force, 75
--silent, 75
-e, 75
-f, 75
-s, 75

init_kwargs (kedro_mlflow.config.kedro_mlflow_config.RequestHeaderProviderOptions
attribute), 89

input_name (kedro_mlflow.pipeline.pipeline_ml.PipelineML
property), 79

K
kedro_mlflow.config.kedro_mlflow_config

module, 84
kedro_mlflow.io.artifacts.mlflow_artifact_dataset

module, 69
kedro_mlflow.io.metrics.mlflow_metric_dataset

module, 69
kedro_mlflow.io.metrics.mlflow_metric_history_dataset

module, 69
kedro_mlflow.io.models.mlflow_abstract_model_dataset

module, 70
kedro_mlflow.io.models.mlflow_model_local_filesystem_dataset

module, 73
kedro_mlflow.io.models.mlflow_model_registry_dataset

module, 74
kedro_mlflow.io.models.mlflow_model_tracking_dataset

module, 71
kedro_mlflow.mlflow.kedro_pipeline_model

module, 82
kedro_mlflow.pipeline.pipeline_ml

module, 77
kedro_mlflow.pipeline.pipeline_ml_factory

96 Index

kedro-mlflow, Release 0.12.0

module, 81
KedroMlflowConfig (class in ke-

dro_mlflow.config.kedro_mlflow_config),
85

KedroMlflowConfig.Config (class in ke-
dro_mlflow.config.kedro_mlflow_config),
85

KedroMlflowPipelineMLError, 77
KedroPipelineModel (class in ke-

dro_mlflow.mlflow.kedro_pipeline_model),
82

KedroPipelineModelError, 83
KPM_KWARGS_DEFAULT (ke-

dro_mlflow.pipeline.pipeline_ml.PipelineML
attribute), 77

L
load_context() (kedro_mlflow.mlflow.kedro_pipeline_model.KedroPipelineModel

method), 83
LOG_MODEL_KWARGS_DEFAULT (ke-

dro_mlflow.pipeline.pipeline_ml.PipelineML
attribute), 77

long_params_strategy (ke-
dro_mlflow.config.kedro_mlflow_config.MlflowParamsOptions
attribute), 86

M
mlflow_registry_uri (ke-

dro_mlflow.config.kedro_mlflow_config.MlflowServerOptions
attribute), 87

mlflow_tracking_uri (ke-
dro_mlflow.config.kedro_mlflow_config.MlflowServerOptions
attribute), 87

MlflowAbstractModelDataSet (class in ke-
dro_mlflow.io.models.mlflow_abstract_model_dataset),
70

MlflowArtifactDataset (class in ke-
dro_mlflow.io.artifacts.mlflow_artifact_dataset),
69

MlflowMetricDataset (class in ke-
dro_mlflow.io.metrics.mlflow_metric_dataset),
69

MlflowMetricHistoryDataset (class in ke-
dro_mlflow.io.metrics.mlflow_metric_history_dataset),
69

MlflowModelLocalFileSystemDataset (class in ke-
dro_mlflow.io.models.mlflow_model_local_filesystem_dataset),
73

MlflowModelRegistryDataset (class in ke-
dro_mlflow.io.models.mlflow_model_registry_dataset),
74

MlflowModelTrackingDataset (class in ke-
dro_mlflow.io.models.mlflow_model_tracking_dataset),
71

MlflowParamsOptions (class in ke-
dro_mlflow.config.kedro_mlflow_config),
86

MlflowParamsOptions.Config (class in ke-
dro_mlflow.config.kedro_mlflow_config),
86

MlflowServerOptions (class in ke-
dro_mlflow.config.kedro_mlflow_config),
87

MlflowServerOptions.Config (class in ke-
dro_mlflow.config.kedro_mlflow_config),
87

MlflowTrackingOptions (class in ke-
dro_mlflow.config.kedro_mlflow_config),
88

MlflowTrackingOptions.Config (class in ke-
dro_mlflow.config.kedro_mlflow_config), 88

model_config (kedro_mlflow.config.kedro_mlflow_config.DictParamsOptions
attribute), 84

model_config (kedro_mlflow.config.kedro_mlflow_config.DisableTrackingOptions
attribute), 84

model_config (kedro_mlflow.config.kedro_mlflow_config.ExperimentOptions
attribute), 85

model_config (kedro_mlflow.config.kedro_mlflow_config.KedroMlflowConfig
attribute), 86

model_config (kedro_mlflow.config.kedro_mlflow_config.MlflowParamsOptions
attribute), 86

model_config (kedro_mlflow.config.kedro_mlflow_config.MlflowServerOptions
attribute), 87

model_config (kedro_mlflow.config.kedro_mlflow_config.MlflowTrackingOptions
attribute), 88

model_config (kedro_mlflow.config.kedro_mlflow_config.RequestHeaderProviderOptions
attribute), 89

model_config (kedro_mlflow.config.kedro_mlflow_config.RunOptions
attribute), 89

model_config (kedro_mlflow.config.kedro_mlflow_config.UiOptions
attribute), 90

model_fields (kedro_mlflow.config.kedro_mlflow_config.DictParamsOptions
attribute), 84

model_fields (kedro_mlflow.config.kedro_mlflow_config.DisableTrackingOptions
attribute), 84

model_fields (kedro_mlflow.config.kedro_mlflow_config.ExperimentOptions
attribute), 85

model_fields (kedro_mlflow.config.kedro_mlflow_config.KedroMlflowConfig
attribute), 86

model_fields (kedro_mlflow.config.kedro_mlflow_config.MlflowParamsOptions
attribute), 87

model_fields (kedro_mlflow.config.kedro_mlflow_config.MlflowServerOptions
attribute), 87

model_fields (kedro_mlflow.config.kedro_mlflow_config.MlflowTrackingOptions
attribute), 88

model_fields (kedro_mlflow.config.kedro_mlflow_config.RequestHeaderProviderOptions
attribute), 89

model_fields (kedro_mlflow.config.kedro_mlflow_config.RunOptions

Index 97

kedro-mlflow, Release 0.12.0

attribute), 89
model_fields (kedro_mlflow.config.kedro_mlflow_config.UiOptions

attribute), 90
model_post_init() (ke-

dro_mlflow.config.kedro_mlflow_config.ExperimentOptions
method), 85

model_post_init() (ke-
dro_mlflow.config.kedro_mlflow_config.MlflowServerOptions
method), 87

model_uri (kedro_mlflow.io.models.mlflow_model_tracking_dataset.MlflowModelTrackingDataset
property), 73

modelify command line option
--artifact-path, 76
--await-registration-for, 77
--code-path, 76
--conda-env, 76
--copy-mode, 76
--extra-pip-requirements, 77
--infer-input-example, 76
--infer-signature, 76
--input-name, 76
--pip-requirements, 77
--pipeline, 76
--registered-model-name, 76
--run-id, 76
--run-name, 76
-i, 76
-p, 76
-r, 76

module
kedro_mlflow.config.kedro_mlflow_config,

84
kedro_mlflow.io.artifacts.mlflow_artifact_dataset,

69
kedro_mlflow.io.metrics.mlflow_metric_dataset,

69
kedro_mlflow.io.metrics.mlflow_metric_history_dataset,

69
kedro_mlflow.io.models.mlflow_abstract_model_dataset,

70
kedro_mlflow.io.models.mlflow_model_local_filesystem_dataset,

73
kedro_mlflow.io.models.mlflow_model_registry_dataset,

74
kedro_mlflow.io.models.mlflow_model_tracking_dataset,

71
kedro_mlflow.mlflow.kedro_pipeline_model,

82
kedro_mlflow.pipeline.pipeline_ml, 77
kedro_mlflow.pipeline.pipeline_ml_factory,

81

N
name (kedro_mlflow.config.kedro_mlflow_config.ExperimentOptions

attribute), 85
name (kedro_mlflow.config.kedro_mlflow_config.RunOptions

attribute), 90
nested (kedro_mlflow.config.kedro_mlflow_config.RunOptions

attribute), 90

O
only_nodes() (kedro_mlflow.pipeline.pipeline_ml.PipelineML

method), 79
only_nodes_with_inputs() (ke-

dro_mlflow.pipeline.pipeline_ml.PipelineML
method), 80

only_nodes_with_namespace() (ke-
dro_mlflow.pipeline.pipeline_ml.PipelineML
method), 80

only_nodes_with_outputs() (ke-
dro_mlflow.pipeline.pipeline_ml.PipelineML
method), 80

only_nodes_with_tags() (ke-
dro_mlflow.pipeline.pipeline_ml.PipelineML
method), 80

P
params (kedro_mlflow.config.kedro_mlflow_config.MlflowTrackingOptions

attribute), 88
pass_context (kedro_mlflow.config.kedro_mlflow_config.RequestHeaderProviderOptions

attribute), 89
pipeline_ml_factory() (in module ke-

dro_mlflow.pipeline.pipeline_ml_factory),
81

PipelineML (class in ke-
dro_mlflow.pipeline.pipeline_ml), 77

pipelines (kedro_mlflow.config.kedro_mlflow_config.DisableTrackingOptions
attribute), 84

port (kedro_mlflow.config.kedro_mlflow_config.UiOptions
attribute), 90

predict() (kedro_mlflow.mlflow.kedro_pipeline_model.KedroPipelineModel
method), 83

R
recursive (kedro_mlflow.config.kedro_mlflow_config.DictParamsOptions

attribute), 84
request_header_provider (ke-

dro_mlflow.config.kedro_mlflow_config.MlflowServerOptions
attribute), 88

RequestHeaderProviderOptions (class in ke-
dro_mlflow.config.kedro_mlflow_config), 89

RequestHeaderProviderOptions.Config (class in
kedro_mlflow.config.kedro_mlflow_config), 89

restore_if_deleted (ke-
dro_mlflow.config.kedro_mlflow_config.ExperimentOptions
attribute), 85

run (kedro_mlflow.config.kedro_mlflow_config.MlflowTrackingOptions
attribute), 88

98 Index

kedro-mlflow, Release 0.12.0

RunOptions (class in ke-
dro_mlflow.config.kedro_mlflow_config),
89

RunOptions.Config (class in ke-
dro_mlflow.config.kedro_mlflow_config),
89

S
sep (kedro_mlflow.config.kedro_mlflow_config.DictParamsOptions

attribute), 84
server (kedro_mlflow.config.kedro_mlflow_config.KedroMlflowConfig

attribute), 86
setup() (kedro_mlflow.config.kedro_mlflow_config.KedroMlflowConfig

method), 86
SUPPORTED_SAVE_MODES (ke-

dro_mlflow.io.metrics.mlflow_metric_dataset.MlflowMetricDataset
attribute), 69

T
tag() (kedro_mlflow.pipeline.pipeline_ml.PipelineML

method), 80
to_nodes() (kedro_mlflow.pipeline.pipeline_ml.PipelineML

method), 81
to_outputs() (kedro_mlflow.pipeline.pipeline_ml.PipelineML

method), 81
tracking (kedro_mlflow.config.kedro_mlflow_config.KedroMlflowConfig

attribute), 86
training (kedro_mlflow.pipeline.pipeline_ml.PipelineML

property), 81
type (kedro_mlflow.config.kedro_mlflow_config.RequestHeaderProviderOptions

attribute), 89

U
ui (kedro_mlflow.config.kedro_mlflow_config.KedroMlflowConfig

attribute), 86
ui command line option

--env, 76
--host, 76
--port, 76
-e, 76
-h, 76
-p, 76

UiOptions (class in ke-
dro_mlflow.config.kedro_mlflow_config),
90

UiOptions.Config (class in ke-
dro_mlflow.config.kedro_mlflow_config),
90

V
validate_assignment (ke-

dro_mlflow.config.kedro_mlflow_config.KedroMlflowConfig.Config
attribute), 86

Index 99

	Introduction
	Introduction
	What is Kedro?
	What is Mlflow?
	A brief comparison between Kedro and Mlflow
	Configuration and prototyping: Kedro 1 - 0 Mlflow
	Versioning: Kedro 1 - 1 Mlflow
	Model packaging and service: Kedro 1 - 2 Mlflow
	Conclusion: Use Kedro and add Mlflow for machine learning projects

	Motivation
	When should I use kedro-mlflow?
	Why should I use kedro-mlflow?
	Benchmark of existing solutions
	Enforcing Kedro principles

	Introduction
	Installation guide
	Pre-requisites
	Create a virtual environment
	Check your kedro version

	Install the plugin
	Install from PyPI
	Install from sources

	Check the installation
	Available commands

	Initialize your Kedro project
	Create a kedro project
	Activate kedro-mlflow in your kedro project
	Setting up the kedro-mlflow configuration file
	Declaring kedro-mlflow hooks
	Declaring hooks through auto-discovery (for kedro>=0.16.4) [Default behaviour]
	Declaring hooks statically in settings.py

	Migration guide
	Migration from 0.10.x to 0.11.x
	Migration from 0.9.x to 0.10.x
	Migration from 0.8.x to 0.9.x
	Migration from 0.7.x to 0.8.x
	Migration from 0.6.x to 0.7.x
	Migration from 0.5.x to 0.6.x
	Migration from 0.4.x to 0.5.x
	Migration from 0.4.0 to 0.4.1
	Migration from 0.3.x to 0.4.x
	Catalog entries
	Hooks
	KedroPipelineModel

	Introduction
	Goal of the tutorial
	Example project
	Install the plugin in a virtual environment
	Install the toy project
	Installation with kedro>=0.16.3
	Installation with kedro>=0.16.0, <=0.16.2

	Install dependencies

	First steps with the plugin
	Initialize kedro-mlflow
	Run the pipeline
	Open the UI
	Parameters versioning
	Journal information
	Artifacts

	Going further

	Introduction
	Configure mlflow inside your project
	Context: mlflow tracking under the hood
	The mlflow.yml file
	Configure the tracking server
	Configure the tracking and registry uri
	Configure the credentials
	Default credentials with environment variables
	Authentication with expiring tokens

	Deactivate tracking under conditions
	Configure mlflow experiment
	Configure the run
	Extra tracking configuration
	Configure the user interface

	Parameters versioning
	Automatic parameters versioning
	How does MlflowNodeHook operates under the hood?
	Frequently Asked Questions
	Will parameters be recorded if the pipeline fails during execution?
	How are parameters detected by the plugin?

	Versioning Kedro DataSets
	What is artifact tracking?
	How to version data in a kedro project?
	Frequently asked questions
	Can I pass extra parameters to the MlflowArtifactDataset for finer control?
	Can I use the MlflowArtifactDataset in interactive mode?
	How do I upload an artifact to a non local destination (e.g. an S3 or blog storage)?
	Can I log an artifact in a specific run?
	Can I reload an artifact from an existing run to use it in another run ?
	Can I create a remote folder/subfolders architecture to organize the artifacts?

	Version model
	What is model tracking?
	How to track models using MLflow in Kedro project?
	Frequently asked questions?
	How is it working under the hood?
	How can I track a custom MLflow model flavor?
	How can I save model locally and log it in MLflow in one step?

	Version metrics
	What is metric tracking?
	How to version metrics in a kedro project?
	Saving a single float as a metric with MlflowMetricDataset
	Saving the evolution of a metric during training with MlflowMetricHistoryDataset
	Saving several metrics with their entire history with MlflowMetricsHistoryDataset

	How to return metrics from a node?

	Opening the UI
	The mlflow user interface
	The kedro-mlflow helper

	Introduction
	Pipeline serving with kedro-mlflow
	Introduction to Mlflow Models
	Pre-requisite for serving a pipeline

	Register a pipeline to mlflow with KedroPipelineModel custom mlflow model
	Register a pipeline to mlflow with KedroPipelineModel custom mlflow model
	Automatically log an inference after running the training pipeline
	Getting started
	Complete step by step demo project with code
	Motivation

	Deployment patterns for kedro pipelines

	Introduction
	Why we need a mlops framework to manage machine learning development lifecycle
	Machine learning deployment is hard because it comes with a lot of constraints and no adequate tooling
	Identifying the challenges to address when deploying machine learning
	A comparison between traditional software development and machine learning projects
	ML and traditional software have different moving parts
	ML and traditional software have different development lifecycles

	Deployment issues addressed by kedro-mlflow and their solutions
	Out of scope
	Issue 1: The training process is poorly reproducible
	Issue 2: The data scientist and stakeholders focus on training
	Issue 3: Inference and training are entirely decoupled
	Issue 4: Data scientists do not handle business objects
	Overcoming these problems: support an organisational solution with an efficient tool

	The components of a machine learning application
	Definition: apps of a machine learning projects
	Difference between an app and a Kedro pipeline
	Apps development lifecycle in a machine learning project
	The data scientist creates at least part of the 3 apps
	The etl_app
	The ml_app
	The user_app

	kedro-mlflow mlops solution
	Reminder
	Enforcing these principles with a dedicated tool
	Synchronizing training and inference pipeline
	Packaging and serving a Kedro Pipeline
	kedro-mlflow’s magic: inference autologging
	Reuse the model in kedro

	Introduction
	How to use kedro-mlflow in a notebook
	Reminder on mlflow’s limitations with interactive use
	Setup mlflow configuration in your notebook
	Difference with running through the CLI
	Guidelines and best practices suggestions

	Introduction
	New DataSet
	MlflowArtifactDataset
	Metrics DataSets
	MlflowMetricDataset
	MlflowMetricHistoryDataset

	Models DataSets
	MlflowModelTrackingDataset
	MlflowModelLocalFileSystemDataset
	MlflowModelRegistryDataset

	Hooks
	MlflowHook

	Pipelines
	PipelineML and pipeline_ml_factory

	Cli commands
	init
	ui
	modelify

	Configuration

	kedro_mlflow package
	Datasets
	Artifact DataSet
	Metrics DataSet
	Models DataSet

	CLI
	init
	ui
	modelify

	Pipelines
	Custom Mlflow Models
	Configuration
	Notebook
	Hooks
	Node Hook
	Pipeline Hook

	Indices and tables
	Python Module Index
	Index

