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CHAPTER
ONE

INTRODUCTION

1.1 Introduction

1.1.1 What is Kedro?

Kedro is a python package which facilitates the prototyping of data pipelines. It aims at implementing software
engineering best practices (separation between I/O and compute, abstraction, templating. . .). It is specifically useful
for machine learning projects since it provides within the same interface both interactive objects for the exploration
phase and Command Line Interface (CLI) and configuration files for the production phase. This makes the transition
from exploration to production as smooth as possible.

For more details, see Kedro’s official documentation.

1.1.2 What is M1flow?

M1flow is a library which helps managing the lifecycle of machine learning models. MlIflow provides 4 modules:

e Mlflow Tracking: This modules focuses on experiment versioning. The goal is to store all the objects
needed to reproduce any code execution. This includes code through version control, but also parameters and
artifacts (i.e objects fitted on data like encoders, binarizers...). These elements vary wildly during machine
learning experimentation phase. M1flow also enable to track metrics to evaluate runs, and provides a User
Interface (UI) to browse the different runs and compare them.

e Mlflow Projects: This module provides a configuration files and CLI to enable reproducible execution of
pipelines in production phase.

e M1flow Models: This module defines a standard way for packaging machine learning models, and provides
built-in ways to serve registered models. Such standardization enable to serve these models across a wide range
of tools.

e Ml1flow Model Registry: This modules aims at monitoring deployed models. The registry manages the
transition between different versions of the same model (when the dataset is retrained on new data, or when
parameters are updated) while it is in production.

For more details, see MlIflow’s official documentation.



https://kedro.readthedocs.io/en/stable/01_introduction/01_introduction.html
https://www.mlflow.org/docs/latest/index.html
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1.1.3 A brief comparison between Kedro and M1flow

While Kedro and M1 f1ow do not compete in the same field, they provide some overlapping functionalities. M1f1low
is specifically dedicated to machine learning and its lifecycle management, while Kedro focusing on data pipeline
development. Below chart compare the different functionalities:

We can draw the following conclusions from the chart, discussed hereafter.

1.1.3.1 Configuration and prototyping: Kedro 1 - 0 Miflow

M1flow and Kedro are essentially overlapping on the way they offer a dedicated configuration files for running the
pipeline from CLI. However:

* M1flow provides a single configuration file (the MLPro ject) where all elements are declared (data, param-
eters and pipelines). Its goal is mainly to enable CLI execution of the project, but it is not very flexible. In my
opinion, this file is production oriented and is not really intended to use for exploration.

¢ Kedro offers a bunch of files (catalog.yml, parameters.yml, pipeline.py) and their associated
abstraction (AbstractDataSet, DataCatalog, Pipeline and node objects). Kedro is much more
opinionated: each object has a dedicated place (and only one!) in the template. This makes the framework both
exploration and production oriented. The downside is that it could make the learning curve a bit sharper since
a newcomer has to learn all Kedro specifications. It also provides a kedro-viz plugin to visualize the DAG
interactively, which is particularly handy in medium-to-big projects.

1.1.3.2 Versioning: Kedro 1 - 1 Miflow

The Kedro Journal aims at reproducibility, but is not focused on machine learning. The Journal keeps track of two
elements:

e the CLI arguments , including on the fly parameters. This makes the command used to run the pipeline fully
reproducible.

* the AbstractVersionedDataSet for which versioning is activated. It consists in copying the data whom
versioned argument is True when the save method of the AbstractVersionedDataSet is called.
This approach suffers from two main drawbacks:

— the configuration is assumed immutable (including parameters), which is not realistic ni machine learning
projects where they are very volatile. To fix this, the git sha has been recently added to the Journal,
but it has still some bugs in my experience (including the fact that the current git sha is logged even if
the pipeline is ran with uncommitted change, which prevents reproducibility). This is still recent and will
likely evolve in the future.

— there is no support for browsing old runs, which prevents cleaning the database with old and unused
datasets, compare runs between each other. ..

On the other hand, M1 flow:

* distinguishes between artifacts (i.e. any data file), metrics (integers that may evolve over time) and parame-
ters. The logging is very straightforward since there is a one-liner function for logging the desired type. This
separation makes further manipulation easier.

« offers a way to configure the logging in a database through the m1flow_tracking_uri parameter. This
database-like logging comes with easy querying of different runs through a client (for instance “find the most
recent run with a metric at least above a given threshold” is immediate with M1 f1ow but hacky in Kedro).

e comes with a User Interface (UIl) which enable to browse / filter / sort the runs, display graphs of the metrics,
render plots. .. This make the run management much easier than in Kedro.

2 Chapter 1. Introduction
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https://github.com/quantumblacklabs/kedro/issues/406
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https://www.mlflow.org/docs/latest/python_api/mlflow.tracking.html#mlflow.tracking.MlflowClient
https://mlflow.org/docs/latest/tracking.html#id7
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* has a command to reproduce exactly the run from a given git sha, which is not possible in Kedro.

1.1.3.3 Model packaging and service: Kedro 1 - 2 Miflow
Kedro offers a way to package the code to make the pipelines callable, but does not manage specifically machine
learning models.

M1flow offers a way to store machine learning models with a given “flavor”, which is the minimal amount of infor-
mation necessary to use the model for prediction:

* aconfiguration file

* all the artifacts, i.e. the necessary data for the model to run (including encoder, binarizer. . .)
* aloader

* aconda configuration through an environment . yml file

When a stored model meets these requirements, M1 f1ow provides built-in tools to serve the model (as an API or for
batch prediction) on many machine learning tools (Microsoft Azure ML, Amazon Sagemaker, Apache SparkUDF)
and locally.

1.1.3.4 Conclusion: Use Kedro and add Miflow for machine learning projects

In my opinion, Kedro’s will to enforce software engineering best practice makes it really useful for machine learning
teams. It is extremely well documented and the support is excellent, which makes it very user friendly even for people
with no CS background. However, it lacks some machine learning-specific functionalities (better versioning, model
service), and it is where M1 f1ow fills the gap.

1.2 Motivation

1.2.1 When should | use kedro-mliflow?

Basically, you should use kedro-mlflow in any Kedro project which involves machine learning / deep learning.
As stated in the introduction, Kedro’s current versioning (as of version 0 . 1 6. 1) is not sufficient for machine learning
projects: it lacks a Ul and a run management system. Besides, the KedroPipelineModel ability to serve a kedro
pipeline as an API or a batch in one line of code is a great addition for collaboration and transition to production.

If you do not use Kedro or if you do pure data manipulation which do not involve machine learning, this plugin is
not what you are seeking for ;)

1.2.2 Why should | use kedro-miflow ?

1.2.2.1 Benchmark of existing solutions

This paragraph gives a (quick) overview of existing solutions for mlflow integration inside Kedro projects.
M1flow is very simple to add to any existing code. It is a 2-step process:
* add 1log_ {XXX} (either param, artifact, metric or model) functions where they are needed inside the code

* add a MLProject at the root of the project to enable CLI execution. This file must contain all the possible
execution steps (like the pipeline.py in a kedro project).

1.2. Motivation 3


https://github.com/quantumblacklabs/kedro/issues/297

kedro-miflow, Release 0.3.0

Including mlflow inside a kedro project is consequently very easy: the logging functions can be added in the
code, and the MLProject is very simple and is composed almost only of the kedro run command. You can find
examples of such implementation:

¢ the medium paper by QuantumBlack employees.
¢ the associated github repo

* other examples can be found on Github, but AFAIK all of them follow the very same principles.

1.2.2.2 Enforcing Kedro principles

Above implementations have the advantage of being very straightforward and miflow compliant, but they break several
Kedro principles:

* the MLFLOW_TRACKING_URI which registers the database where runs are logged is declared inside the code
instead of a configuration file, which hinders portability across environments and makes transition to produc-
tion more difficult

* the logging of different elements can be put in many places in the Kedro template (in the code of any function
involved in a node, in a Hook, in the ProjectContext, in a transformer...). This is not compliant
with the Kedro template where any object has a dedicated location. We want to avoid the logging to occur
anywhere because:

— itis very error-prone (one can forget to log one parameter)
— itis hard to modify (if you want to remove / add / modify an mlflow action you have to find it in the code)

— it prevents reuse (re-usable function must not contain mlflow specific code unrelated to their functional
specificities, only their execution must be tracked).

kedro-mlflow enforces these best practices while implementing a clear interface for each mlflow action in Kedro
template. Below chart maps the mlflow action to perform with the Python API provided by kedro-mlflow and the
location in Kedro template where the action should be performed.

In the current version (kedro_mlflow=0.2.0), kedro-mlflow does not provide interface to log metrics, set tags
or log models outside a Kedro Pipeline. These decisions are subject to debate and design decisions (for instance,
metrics are often updated in a loop during each epoch / training iteration and it does not always make sense to register
the metric between computation steps, e.g. as a an I/O operation after a node run).

Note: the version 0. 2. 0 does not need any MLPro ject file to use mlflow inside your Kedro project. As seen in the
introduction, this file overlaps with Kedro configuration files.

1.3 Installation

1.3.1 Pre-requisites

I strongly recommend to use conda (a package manager) to create an environment in order to avoid version conflicts
between packages.

I also recommend to read Kedro installation guide to set up your Kedro project.

4 Chapter 1. Introduction
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1.3.2 Installation guide

The plugin is compatible with kedro>=0.16.0. Since Kedro tries to enforce backward compatibility, it will very
likely remain compatible with further versions.

First, install Kedro from PyPI and ensure you have a 0.16. 0 version:

’pip install --upgrade "kedro>=0.16.0,<0.17.0"

Second, install kedro-ml1f1ow plugin from PyPi:

’pip install —--upgrade kedro-mlflow

You may want to install the develop branch which has unreleased features:

’pip install git+https://github.com/Galileo-Galilei/kedro-mlflow.git@develop

1.3.3 Check the installation

Type kedro info in aterminal to check the installation. If it has succeeded, you should see the following ascii art:

[ VAV VA '/ _\
| < /o Q)
PN\ N N/
v0.16.2

kedro allows teams to create analytics
projects. It is developed as part of
the Kedro initiative at QuantumBlack.

Installed plugins:
kedro_mlflow: 0.2.0 (hooks:global,project)

The version 0. 2. 0 of the plugin is installed and has both global and project commands.

That’s it! You are now ready to go!

1.3.4 Available commands

With the kedro mlflow -h command outside of a kedro project, you now see the following output:

Usage: kedro mlflow [OPTIONS] COMMAND [ARGS]...
Use mlflow-specific commands inside kedro project.

Options:
-h, ——-help Show this message and exit.

Commands :
new Create a new kedro project with updated template.

1.3. Installation 5
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CHAPTER
TWO

INTRODUCTION

2.1 Example project

2.1.1 Check your installation

Create a conda environment and kedro-ml £ 1ow (this will automatically install kedro>=0.16.0).

conda create —n km_example python=3.6.8 —--yes
conda activate km_example
pip install kedro-mlflow

2.1.2 Install the toy project

For this end to end example, we will use the kedro starter with the iris dataset.
We use this project because:

* it covers most of the common use cases

* it is compatible with older version of Kedro so newcomers are used to it

* it is maintained by Kedro maintainers and therefore enforces some best practices.

2.1.2.1 Installation with kedro>=0.16.3

The default starter is now called “pandas-iris”. In a new console, enter:

kedro new —--starter=pandas-—-iris

Answer Kedro M1flow Example, km-example and km_example to the three setup questions of a new kedro
project:

Project Name:

Please enter a human readable name for your new project.
Spaces and punctuation are allowed.
[New Kedro Project]: Kedro Mlflow Example

Repository Name:

Please enter a directory name for your new project repository.
Alphanumeric characters, hyphens and underscores are allowed.

(continues on next page)



https://kedro.readthedocs.io/en/latest/02_getting_started/05_starters.html#creating-new-projects-with-kedro-starters
https://github.com/quantumblacklabs/kedro-starter-pandas-iris
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(continued from previous page)

Lowercase is recommended.
[kedro-mlflow-example]: km—example

Python Package Name:

Please enter a valid Python package name for your project package.

Alphanumeric characters and underscores are allowed.

Lowercase is recommended. Package name must start with a letter or underscore.
[kedro_mlflow_example]: km_example

2.1.2.2 Installation with kedro>=0.16.0, <=0.16.2

With older versions of Kedro, the starter option is not available, but this kedro new provides an “Include example”
question. Answer y to this question to get the same starter as above. In a new console, enter:

kedro new

Answer Kedro Mlflow Example, km-example, km_example and y to the four setup questions of a new
kedro project:

Project Name:

Please enter a human readable name for your new project.
Spaces and punctuation are allowed.
[New Kedro Project]: Kedro Mlflow Example

Repository Name:

Please enter a directory name for your new project repository.
Alphanumeric characters, hyphens and underscores are allowed.
Lowercase is recommended.

[kedro—-mlflow-example]: km—-example

Python Package Name:

Please enter a valid Python package name for your project package.

Alphanumeric characters and underscores are allowed.

Lowercase is recommended. Package name must start with a letter or underscore.
[kedro_mlflow_example]: km_example

Generate Example Pipeline:

Do you want to generate an example pipeline in your project?
Good for first-time users. (default=N)
[y/N]: y

8 Chapter 2. Introduction
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2.2 Install dependencies

Move to the project directory:

’cd km-example

Install the project dependencies:

pip install -r src/requirements.txt
pip install --upgrade kedro-mlflow==0.2.0

Warning: Do not use kedro install commands does not seem to install the packages in your activated
environment.

2.3 First steps with the plugins

2.3.1 Initialize kedro-mlflow

Run

kedro mlflow init

You have the following message:

'conf/base/mlflow.yml' successfully updated.
'run.py' successfully updated

The conf/base folder is updated:

2.2. Install dependencies 9
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~ KM-EXAMPLE
» W __pycache
» m .ipython
w iy conf
~ @ base
= catalogymi
= loaaing.yml
wu milflow.ymi
= parameters.ymi
> M local
README. md
> W@ data
> W docs
> W logs
» ml notebooks
rc
~ @ km_sxample
> ml _pycache__
~ i pipelines

> ol __pycache__

» m data_engineering

> mll data_science
e _init__py
e _init_py
= _pipeline.ov
@ runpy
> A tests
IF requirements.in
Ir requirements.txt
e setup.py
M .coveragerc
& .gtignore
0 .isort.cfg
s kedroyml
& kedro_clipy
README.md
L setup.cfg

If you have configured your own mlflow server, you can specify the tracking uri in the m1flow.yml (replace the
highlighted line below:):

10 Chapter 2. Introduction
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1 name
run

2.3.2 Run the pipeline

Open a new command and launch

kedro run

If the pipeline executes properly, you should see the following log:

2020-07-13 21:29:24,939 - kedro.versioning.journal - WARNING - Unable to git describe
—path/to/km-example

2020-07-13 21:29:25,401 - kedro.io.data_catalog - INFO - Loading data from " example_
—iris_data (CSVDataSet) ...

2020-07-13 21:29:25,562 - kedro.io.data_catalog - INFO - Loading data from,

— params:example_test_data_ratio® (MemoryDataSet)...
2020-07-13 21:29:25,969 - kedro.pipeline.node - INFO - Running node: split_
—data ([example_iris_data,params:example_test_data_ratio]) -> [example_test_x,example_

—test_y,example_train_x,example_train_y]

2020-07-13 21:29:26,053 - kedro.io.data_catalog - INFO - Saving data to “example_
—train_x' (MemoryDataSet)...

2020-07-13 21:29:26,368 - kedro.io.data_catalog - INFO - Saving data to “example_
—train_y = (MemoryDataSet) ...

2020-07-13 21:29:26,484 - kedro.io.data_catalog - INFO - Saving data to “example_test_
—x'  (MemoryDataSet) ...

(continues on next page)
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(continued from previous page)

2020-07-13 21:29:26,486 - kedro.

—y~ (MemoryDataSet) ...

2020-07-13 21:29:26,610 - kedro.

—4 tasks
2020-07-13 21:29:26,850 - kedro
—train_x" (MemoryDataSet) ...

2020-07-13 21:29:26,851 - kedro.

—train_y® (MemoryDataSet)...
2020-07-13 21:29:26,965 - kedro

io.data_catalog - INFO - Saving data to “example_test_

runner.sequential_runner - INFO - Completed 1 out of

.io.data_catalog

io.data_catalog

.io.data_catalog
— parameters’ (MemoryDataSet)..

2020-07-13 21:29:26,972 - kedro.pipeline.node -

—model ([example_train_x,example_train_y,parameters])

- INFO - Loading data from "“example_
- INFO - Loading data from " example_
- INFO - Loading data from,

INFO - Running node: train_
—> [example_model]

2020-07-13 21:29:27,756 - kedro.io.data_catalog - INFO - Saving data to “~example_

—model” (MemoryDataSet)...

2020-07-13 21:29:27,763 - kedro.runner.sequential_ runner - INFO - Completed 2 out of

—4 tasks

2020-07-13 21:29:28,141 - kedro.io.data_catalog - INFO

—model” (MemoryDataSet) ...

2020-07-13 21:29:28,161 - kedro.io.data_catalog - INFO

—test_x" (MemoryDataSet)...

2020-07-13 21:29:28,670 - kedro.pipeline.node - INFO -
—model, example_test_x]) —-> [example_predictions]

2020-07-13 21:29:29,002 - kedro.io.data_catalog - INFO
(MemoryDataSet) ..
.runner.sequential_runner - INFO - Completed 3 out of |

—predictions’
2020-07-13 21:29:29,248 - kedro
—4 tasks

2020-07-13 21:29:29,433 - kedro
—predictions’
2020-07-13 21:29:29,730 - kedro
—test_y~ (MemoryDataSet) ...
2020-07-13 21:29:29,911 - kedro

- Loading data from "~ example_
- Loading data from "~ example_
Running node: predict ([example_

- Saving data to “example_

.io.data_catalog - INFO - Loading data from " example_
(MemoryDataSet) ...
.l1o.data_catalog - INFO - Loading data from " example_

.pipeline.node - INFO - Running node: report_

—accuracy ([example_predictions, example_test_y]) —-> None

2020-07-13 21:29:30,056 - km_example.pipelines.data_science.nodes - INFO - Model,

—accuracy on test set: 100.00%

2020-07-13 21:29:30,214 - kedro.runner.sequential_runner - INFO - Completed 4 out of_

—4 tasks

2020-07-13 21:29:30,372 - kedro.runner.sequential_runner - INFO - Pipeline execution_

—completed successfully.

Since we have kept the default value of the m1flow.yml, the tracking uri (the place where runs are recorded) is a

local m1runs folder which has just been created with the execution:

12
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~ KM-EXAMPLE
> M _pycache
> W Jpythor
v i conf
~ @ base
w. catalog.yml
we lugying.yiml
miflow.ymil

~ parameters.yml

> M local
README.md
mE data
B docs
o o=
m miruns
B notebooks
&
~ @ km_exampgle
> o __pycache
w @ pipelines
> M _pycache
» il data_engineering
» W data_scence
@ _init__py
e _init__py
@ pipelinepy
e run.py
> A tosis
I requirements.in
I regJirements.txt
e setup.py
™ .coveragerc
# .gitignore
£ Jsort.cfg
= cedro.yml
e kedro_dipy
README.md

£} setup.cfy

2.3. First steps with the plugins
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2.3.3 Open the Ul

Launch the ui:

kedro mlflow ui

And open the following adress in your favorite browser

http://localhost:5000/

Experiments  Models GitHub  Docs

Experiments + n km_example

Experiment I0 Artifact Location file 1/C Local/path/to m-example/miruns/1
Default

ne

=X LT Search Runs @ State  Active~ Search Clear
miflow.yml

malc " e Download G5V & =E B8 @ Columns

ath

Last run executed

Click now on the last run executed, you will land on this page:
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km_example > Run 9128c4c15e2¢438db277495611543c97 ~

Date: 2020-07-13 21:29:24

Duration: 5.65

~ Notes [4

None

v Parameters

Source: & \km_example\Scripisikedro

Status: FINISHED

Name Value
example_test_data_ratio 02
parameters {'example_test_data_ratio': 0.2, 'example_num_train_iter 10000, 'example_learning_rate': 0.01}
+ Metrics
Name Value
~ Tags
Name Value Actions
env local AN |
extra_params o 2 1
from_inputs n 2 m
from_nodes | AN
git_sha None 2 1
kedro_command kedro run 2 m
kedro_version 0163 2
load_versions o 2 W
node_names 0 Z W
pipeline_name None 2
project_patn \km-example @
run_id 2020-07-13T19.29.20 5147 Z mw
tags 0 2 W
to_nodes 1] 2
Add Tag

Add
~ Artifacts

No Artifacts Recorded

Use the log artifact APIs to store file outputs from MLflow runs.

2.3. First steps with the plugins
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2.3.3.1 Parameters versioning

Note that the parameters have been recorded automagically. Here, two parameters format are used:

1. The parameter example_test_data_ratio, whichiscalledinthe pipeline.py file with the params:
prefix

2. the dictionary of all parameters in parameters.yml which is a reserved key word in Kedro. Note that this
is bad practice because you cannot know which parameters are really used inside the function called. Another
problem is that it can generate too long parameters names and lead to mlflow errors.

You can see that these are effectively the registered parameters in the pipeline with the kedro—-viz plugin:

pip install kedro-viz
kedro viz

Open your browser at the following adress:

http://localhost:4141/

You should see the following graph:
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B Example Iris Data — Params:example Test Data Ratio

¥ 5

f split Data

v h 4

8 Example Train X 8 Example Train Y +— Parameters

¥

f Train Model

v v

B Example Model B Example Test X

Fs

.
f Predict

¥ v

B Example Predictions © Example TestY

F Y

f Report Accuracy

which indicates clearly which parameters are logged (in the red boxes with the “parameter” icon).
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2.3.3.2 Journal information

The informations provided by the Kedro’s Journal are also recorded as t ags in the mlflow ui in order to make
reproducible. In particluar, the exact command used for running the pipeline and the kedro version used are stored.

2.3.3.3 Artifacts

With this run, artifacts are empty. This is expected: mlflow does not know what it should log and it will not log all
your data by default. However, you want to save your model (at least) or your run is likely useless!

First, open the catalog.yml file which should like this:

Reopen the ui, select the last run and see that the file was uploaded:

» Artifacts

B trained_model pkl Eull Path: file /)
Size: 27386

This works for any type of file (including images with MatplotlibWriter) and the Ul even offers a preview for
png and csv, which is really convenient to compare runs.

Note: Mliflow offers specific logging for machine learning models that should be better suited for your use case, but is
not supported yet in kedro-mlflow==0.2.0
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CHAPTER
THREE

INTRODUCTION

3.1 Scope

3.1.1 In the scope of the tutorial

This tutorial adresses the following items:

1. How to include kedro-mlf1low capabilities in a Kedro project:
1. create a new kedro project with updated template
2. update an existing kedro project

2. Configure mlflow inside a “mlflow initialised” Kedro project

3. Version and track objects during execution with mlflow:
1. Version parameters inside a Kedro project
2. Version data inside a Kedro project
3. (COMING in 0.3.0) Version machine learning models inside a Kedro project
4. (COMING in 0.3.0) Version metrics inside a Kedro project
5. Open mlflow ui with project configuration
6. Package and serve a Kedro pipeline

This is a step by step tutorial and it is recommended to read the different chapters above order, but not mandatory.

3.1.2 Out of scope of the tutorial

Some advanced capabilities are adressed in the advanced use section:

¢ (COMING in 0.3.0) launching a Kedro project directly with mlflow through the MLPro ject file.

19
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3.2 Setup your Kedro project

3.2.1 Check the installation

Type kedro info in a terminal to check if the plugin is properly discovered by Kedro. If the installation has
succeeded, you should see the following ascii art:

|| o
V1SN
o< O
NN, N/

v<kedro-version>

kedro allows teams to create analytics
projects. It is developed as part of
the Kedro initiative at QuantumBlack.

Installed plugins:
kedro_mlflow: <kedro-mlflow-version> (hooks:global,project)

The version <kedro-mlflow-version> of the plugin is installed ans has both global and project commands.

That’s it! You are now ready to go!

3.2.2 Create a kedro project
This plugins must be used in an existing kedro project. If you do not have a kedro project yet, you can create it with
kedro new command. See the kedro docs for a tutorial.

For this tutorial and if you do not have a real-world project, I strongly suggest that you accept to include the proposed
example to make a demo of this plugin out of the box.

3.2.3 Update the template of your kedro project

In order to use the kedro-mlflow plugin, you need to perform 2 actions:
1. Create anmlflow.yml file for configuring mlflow in a dedicated file.

2. Update the src/PYTHON_PACKAGE/run.py to add the necessary hooks to the project context.
The MlflowPipelineHook manages the configuration and registers the PipelineML, while the
M1flowNodeHook autolog the parameters.

3.2.4 Automatic template update (recommended)

3.2.4.1 Default situation

The first and recommended possibility to setup this context is to use a dedicated command line offered by the plugin.
Position yourself with at the root (i.e. the folder with the .kedro.yml file)

$ cd path/to/your/project

Run the init command :
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$ kedro mlflow init

Note : If the warning "You have not updated your template yet. This is mandatory to
use 'kedro-mlflow' plugin. Please run the following command before you can
access to other commands : 'S kedro mlflow init' is raised, this is a bug to be corrected and
you can safely ignore it. If you have never modified your run . py manually, it should run smoothly and you should
get the following message:

'conf/base/mlflow.yml' successfully updated.
'run.py' successfully updated

3.2.4.2 Special case: what happens if you have a custom run.py ?
You may have modified the run.py manually since the creation of the project. This may happen in the following
situations:

* you have added hooks (of another plugin for instance)

* you have modified the ConfigLoader, for instance to us a TemplatedConfigLoader to make your
configuration dynamic and link the files with one another

* you have modified the get_pipelines functions to implement specific logic -... These are advanced fea-
tures of Kedro and it if you have made such modifications they are very likely conscious; however some other
plugins may have modified this file without any warning.

Whatever the reason is, if you run.py was modified since the project creation, the previous process will return the
following warning message:

You have modified your 'run.py' since project creation.
In order to use kedro-mlflow, you must either:

- set up your run.py with the following instructions
INSERT_DOC_URL

— call the following command:
$ kedro mlflow init —--force

In this situation, the m1flow. yml is still created, but the run. py is left unchanged to avoid messing up with your
own changes. You can still erase your run . py and replace it with the one of the plugin with below command.

kedro mlflow init —--force

USE AT YOUR OWN RISK: This will erase definitely all the modifications you made to your own run . py with
no possible recovery. In consequence, this is not the recommended way to setup the project if you have a custom
run.py. The best way to continue the setup is to set up the hooks manually.

3.2.5 Manual update

The M1flowPipelineHook and M1flowNodeHook hooks need to be registered in the the run.py file. The
kedro documenation explain sinde tail how to register a hook.

Your run.py should look like the following code snippet :

from kedro _mlflow.framework.hooks import MlflowNodeHook, MlflowPipelineHook
from <python_package>.pipeline import create pipelines

class ProjectContext (KedroContext) :

(continues on next page)
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(continued from previous page)

"""Users can override the remaining methods from the parent class here,

or create new ones (e.g. as required by plugins)
mrmmn

project_name = "<project-name>"
project_version = "0.16.X" # must be >=0.16.0
hooks = (

MlflowNodeHook (flatten_dict_params=False),
MlflowPipelineHook (model_name="<python_package>",
conda_env="src/requirements.txt")
) # <—— the new lines to add

Pay attention to the following elements:
* if you have other hooks (custom, from other plugins...), you can just add them to the hooks tuple
 you must register both hooks for the plugin to work

¢ the hooks are highly parametrizable, you can find a detailed description of their parameters here.

3.3 Configure miflow inside your project

3.3.1 Context: miflow tracking under the hood

Mlflow is composed of four modules which are described in the introduction section. The ain module is “tracking”.
The goal of this module is to keep track of every varying parameters across different code execution (parameters,
metrics and artifacts). The following schema describes how this modules operates under the hood:

BACKEND STORE
{database that contains
metrics, parameters,
tags, run metadata)

MiflowClient()
The python client |y =
to interact with the B

tracking server

TRACKING SERVER

ARTIFACT STORE
{database that contains
artifacts, i.e. uploaded
files)

Basically, this schema shows that mlflow separates WHERE the artifacts are logged from HOW they are logged inside
your code. You need to setup your mlflow tracking server separately from your code, and then each logging will send
a request to the tracking server to store the elements you want to track in the appropriate location. The davatage of
such a setup are numerous:
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* once the mlflow tracking server is setup, there is songle paramter to set before logging which is the tracking
server uri. This makes configuration very easy in your project.

* since the different storage locations are well identified, it is easy to define custom solutions for each of them.
They can be database or even local folders.

The rationale behind the separation of the backend store and the artifacts store is that artifacts can be very big and are
duplicated across runs, so they need a special management with extensible storage. This is typically cloud storage like
AWS S3 or Azure Blob storage.

3.3.2 The mlflow.yml file

kedro-mlflow needs the tracking uri of your mlflow tracking server to operate properly . The m1flow.yml file
must have themlflow_tracking_uri key with a valid mlflow_tracking_uri associated value. Themlflow.yml
default have this keys set to m1runs. This will create a m1runs folder locally at the root of your kedro project and
enable you to use the plugin without any setup of a mlflow tracking server.

mlflow_tracking uri: mlruns

This is the only mandatory key in the mlflow.yml file, but there are many others that provides fine-grained control on
your mlflow setup. Please see the m1flow.yml description for further details.

3.4 Parameters versioning

3.4.1 Automatic parameters versioning

Parameters versioning is automatic when the M1 £f1owNodeHook is added to the hook list of the ProjectContext.
In kedro-mlflow==0.2.0, this hook has a parameter called flatten_dict_params which enables to log as
distinct parameters the (key, value) pairs of a *>“Dict™" parameter.

You do not need any additional configuration to benefit from parameters versioning.
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3.4.2 How does M1flowNodeHook operates under the hood?

The  medium  post  which  introduces  hooks  explains in  detail the  differents  ex-
ecution  steps Kedro executes when the user calls the kedro run command.

Kedro Framework Kedro Project
KedroContext.run [axacunou TIMELINE
T class ProjectContext{KedroContext):
- :
 initialise | register Hooks hooks = (MyHooksImplementations(),)
I config loader Implementations

provide Hook Tplementations
[ filter pipeline l—
| load catalog 17

from kedro.framework.hooks import hook_impl

class MyHooksImplementations:
Bhook_impl
def after catalog created(self):

aebeuey SYOOH [eqO(D

Iload each datlBEt]i Ehook_impl
def before_node_run(self):
O— 5 cee
AT g
initialise runner r Bhook_impl
W def after_node_run(self):
2 > g
] aas
f & g
run pipeline m  register Ehook_impl
! | HU) specs def before pipeline_run(self):
- cee
[ run each node l E
. . J F Rhook_impl
1 def after_pipeline_ run(self):
B———»

The M1 f1owNodeHook registers the parameters before each node (entry point number 3 on above picture) by calling
““mlflow.log_parameter(param_name, param_value)™" on each parameters of the node.

3.4.3 Frequently Asked Questions
3.4.3.1 Will parameters be recorded if the pipeline fails during execution?
The parameters are registered node by node (and not in a single batch at the beginning of the execution). If the pipeline

fails in the middle of its execution, the parameters of the nodes who have been run will be recorded, but not the
parameters of non executed nodes.

3.4.3.2 How are parameters detected by the plugin?

The hook detects parameters through their prefix params: or the value parameters. These are the reserved
keywords used by Kedro to define parameters in the pipeline.py file(s).

3.4.3.3 How can | register a parameter if | use a TemplatedConfigLoader?

If you use a TemplatedConfigLoader to enable dynamic parameters contruction at runtime or dependency be-
tween configuration files, and if we assume your src/<project-name>/run.py file looks like:

from kedro.config import TemplatedConfiglLoader # new import
from datetime import date

class ProjectContext (KedroContext) :
def _create_config_loader(self, conf_paths: Iterable[str]) —->_
—TemplatedConfigloader:

(continues on next page)
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(continued from previous page)

return TemplatedConfigLoader (

conf_paths,

globals_pattern="xglobals.yml", # read the globals dictionary from,_
—project config

globals_dict={ # extra keys to add to the globals dictionary, take_
—precedence over globals_pattern

execution_date: date.today ()

}I

Then you need to add this entry in your conf/<env>/parameters to ensure that the parameter will be properly
recorded:

’execution_date: S{execution_date}

3.5 Versioning Kedro DataSets

3.5.1 What is artifact tracking?
Mlflow defines artifacts as “any data a user may want to track during code execution”. This includes, but is not limited
to:

* data needed for the model (e.g encoders, vectorizer, the machine learning model itself. .. )

e graphs (e.g. ROC or PR curve, importance variables, margins, confusion matrix. . .)

Artifacts is a very flexible and convenient way to “bind” any data type to your code execution. Mlflow process for
such binding is to :

1. Persist the data locally in the desired file format

2. Upload the data to the artifact store

3.5.2 How to version data in a kedro project?

kedro-mlflow introduces a new AbstractDataSet called Ml1flowArtifactDataSet. Itis a wrapper for any
AbstractDataSet which decorates the underlying dataset save method and logs the file automatically in mlflow
as an artifact each time the save method is called.

Since itis a AbstractDataSet, it can be used with the YAML API. Assume that you have the following entry in
the catalog.yml:

my_dataset_to_version:
type: pandas.CSVDataSet
filepath: /path/to/a/destination/file.csv

You can change it to:

my_dataset_to_version:
type: kedro_mlflow.io.MlflowArtifactDataSet
data_set:
type: pandas.CSVDataSet # or any valid kedro DataSet
filepath: /path/to/a/LOCAL/destination/file.csv # must be a local file,
—wherever you want to log the data in the end
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and this dataset will be automatically versioned in each pipeline execution.

3.5.3 Frequently asked questions
3.5.3.1 Can | pass extra parameters to the M1flowArtifactDataSet for finer control?

The M1flowArtifactDataSet takes a data_set argument which is a python dictionary passed to the
__init__ method of the dataset declared in type. It means that you can pass any arguments accepted by the
underlying dataset in this dictionary. If you want to pass 1oad_args and save_args in the previous example, add
them in the data_set argument:

my_dataset_to_version:
type: kedro_mlflow.io.MlflowArtifactDataSet
data_set:
type: pandas.CSVDataSet # or any valid kedro DataSet
filepath: /path/to/a/local/destination/file.csv
load_args:

sep: ;
save_args:
sep: ;
# ... any other valid arguments for data_set

3.5.3.2 Can | use the M1flowArtifactDataSet in interactive mode?

Like all Kedro AbstractDataSet,M1lflowArtifactDatasSet is callable in the python API:

from kedro mlflow.io import MlflowArtifactDataSet
from kedro.extras.datasets.pandas import CSVDataSet
csv_dataset = MlflowArtifactDataSet (data_set={"type": CSVDataSet, # either a string
— "pandas.CSVDataSet" or the class
"filepath": r"/path/to/a/local/destination/file.
—csv"})
csv_dataset.save (data=pd.DataFrame ({"a":[1,2], "b": [3,41}))

3.5.3.3 How do | upload an artifact to a non local destination (e.g. an S3 or blog storage)?
The location where artifact will be stored does not depends of the logging function but rather on the artifact store
specified when configuring the mlflow server. Read mlflow documentation to see:
* how to configure a mlflow tracking server
* how to configure an artifact store with cloud storage.
You can also refer to this issue for further details.

In kedro-mlflow==0.2.0 you must configure these elements by yourself. Further releases will introduce helpers
for configuration.
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3.5.3.4 Can |l log an artifact in a specific run?

The M1flowArtifactDataSet has an extra argument run_id which specifies the run in which the artifact will
be logged. Be cautious, because this argument will take precedence over the current run when you call kedro
run, causing the artifact to be logged in another run that all the other data of the run.

my_dataset_to_version:
type: kedro_mlflow.io.MlflowArtifactDataSet
data_set:
type: pandas.CSVDataSet # or any valid kedro DataSet
filepath: /path/to/a/local/destination/file.csv
run_id: 13245678910111213 # a valid mlflow run to log in. If None, default to_,
—active run

3.5.3.5 Can | create a remote folder/subfolders architecture to organize the artifacts ?

The M1flowArtifactDataSet has an extra argument run_id which specifies a remote subfolder where the
artifact will be logged. It must be a relative path.

my_dataset_to_version:
type: kedro_mlflow.io.MlflowArtifactDataSet
data_set:
type: pandas.CSVDataSet # or any valid kedro DataSet
filepath: /path/to/a/local/destination/file.csv
artifact_path: reporting # relative path where the remote artifact must be_
—~stored. 1f None, saved in root folder.

3.6 Version model

This is coming soon. If you want to keep track of the progress on this feature, follow this issue.

3.7 Version metrics

3.7.1 What is metric tracking?

MLflow defines metrics as “Key-value metrics, where the value is numeric. Each metric can be updated throughout
the course of the run (for example, to track how your model’s loss function is converging), and MLflow records and
lets you visualize the metric’s full history”.

3.7.2 How to version metrics in a kedro project?

kedro-mlflow introduces a new AbstractDataSet called M1flowMetricsDataSet. Itis a wrapper around a
dictionary with metrics which is returned by node and log metrics in MLflow.

Since itis a AbstractDatasSet, it can be used with the YAML API. You can define it as:

my_model_metrics:
type: kedro_mlflow.io.MlflowMetricsDataSet
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You can provide a prefix key, which is useful in situations like when you have multiple nodes producing metrics
with the same names which you want to distinguish. If you are using the M1flowPipelineHook, it will handle
that automatically for you by giving as prefix metrics data set name. In the example above the prefix would be
my_model_metrics.

Let’s look at an example with custom prefix:

my_model _metrics:
type: kedro_mlflow.io.MlflowMetricsDataSet
prefix: foo

3.7.3 How to return metrics from a node?

Let assume that you have node which doesn’t have any inputs and returns dictionary with metrics to log:

def metrics_node() —-> Dictl[str, Union[float, List[float]]]:
return {
"metricl": {"value": 1.1, "step": 1},

"metric2": [{"value": 1.1, "step": 1}, {"value": 1.2, "step": 2}]

As you can see above, kedro_mlflow.io.M1lflowMetricsDataSet can take metrics as:
e Dict[str, key],
e List[Dict[str, key]]

To store metrics we need to define metrics dataset in Kedro Catalog:

my_model_metrics:
type: kedro_mlflow.io.MlflowMetricsDataSet

Thanks to M1 f1owPipelineHook metrics stored in MLflow will have data set name as a prefix. In our example, it
would be: my_model_metrics.metricl,my_model_metrics.metric2.

We could provide a prefix manually:

my_model_metrics:
type: kedro_mlflow.io.MlflowMetricsDataSet
prefix: foo

which would result in metrics logged as foo.metricl and foo.metric?2.

Finally we need to use our metrics data set in pipeline:

def create_pipeline() —-> Pipeline:
return Pipeline (node (
func=metrics_node,
inputs=None,
outputs="my_model _metrics",
name="1log_metrics",
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3.8 Opening the UI

3.8.1 The mlflow user interface

Mlflow offers a user interface (UI) that enable to browse the run history.

3.8.2 The kedro-mliflow helper

When you use a local storage for kedro mlflow, you can call a mlflow cli command to launch the Ul if you do not have
a mlflow tracking server configured.

To ensure this Ul is linked to the tracking uri specified configuration, kedro-mlf1ow offers the following command:

kedro mlflow ui

which is a wrapper for kedro ui command with the tracking uri of the m1 flow.yml file.

Opens http://localhost:5000 in your browser to see the Ul after calling previous command.

3.9 Pipeline packaging

This features exists but is not documented yet. You can find:
* an explanation of the PipelineML class in the python objects section
* detailed explanations on this issue.

* an example of use in a user project in this repo.
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CHAPTER
FOUR

INTRODUCTION

4.1 New DataSet:

411 MlflowArtifactDataSet

MlflowArtifactDataSet is a wrapper for any AbstractDataSet which logs the dataset automatically in
mlflow as an artifact when its save method is called. It can be used both with the YAML API:

my_dataset_to_version:
type: kedro_mlflow.io.MlflowArtifactDataSet
data_set:
type: pandas.CSVDataSet # or any valid kedro DataSet
filepath: /path/to/a/local/destination/file.csv

or with additional parameters:

my_dataset_to_version:
type: kedro_mlflow.io.MlflowArtifactDataSet
data_set:
type: pandas.CSVDataSet # or any valid kedro DataSet
filepath: /path/to/a/local/destination/file.csv
load_args:

sep: ;
save_args:
sep: ;
# ... any other valid arguments for data_set

run_id: 13245678910111213 # a valid mlflow run to log in. If None, default to_
—active run

artifact_path: reporting # relative path where the artifact must be stored. if_,
—~None, saved in root folder.

or with the python API:

from kedro mlflow.io import MlflowArtifactDataSet
from kedro.extras.datasets.pandas import CSVDataSet
csv_dataset = MlflowArtifactDataSet (data_set={"type": CSVDataSet,
"filepath": r"/path/to/a/local/destination/file.
—csv"})
csv_dataset.save (data=pd.DataFrame ({"a":[1,2], "b": [3,41}))
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4.2 Hooks

This package provides 2 new hooks.

4.2.1 Ml1flowPipelineHook

This hook :
1. manages mlflow settings at the beginning and the end of the run (run start / end).

2. log useful informations for reproducibility as m1flow tags (including kedro Journal information and the
commands used to launch the run).

3. register the pipeline as a valid m1 flow model if it is a PipelineML instance

4.2.2 M1flowNodeHook

This hook :
1. must be used with the M1 flowPipelineHook

2. autolog nodes parameters each time the pipeline is run (with kedro run or programatically).

4.3 Pipelines

4.3.1 PipelineML and pipeline_ml_factory

PipelineML is a new class which extends Pipeline and enable to bind two pipelines (one of training, one of in-
ference) together. This class comes with a KedroPipelineModel class for logging it in mlflow. A pipeline logged
as a mlflow model can be served usingmlflow models serveandmlflow models predict command.

The PipelineML class is not intended to be used directly. A pipeline_ml_factory factory is provided for
user friendly interface.

Example within kedro template:

# in src/PYTHON_PACKAGE/pipeline.py

from PYTHON_PACKAGE.pipelines import data_science as ds

def create_pipelines (x+xkwargs) —-> Dict[str, Pipeline]:

data_science_pipeline = ds.create_pipeline()

training_pipeline = pipeline_ml_factory(training=data_science_pipeline.only_nodes_
—with_tags("training"), # or whatever your logic is for filtering

inference=data_science_pipeline.only_
—nodes_with_tags ("inference"))

return
"ds": data_science_pipeline,
"training": training_pipeline,
" default__": data_engineering_pipeline + data_science_pipeline,
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Now each time you will run kedro run --pipeline=training (provided you registered
MlflowPipelineHook in you run.py), the full inference pipeline will be registered as a mlflow model
(with all the outputs produced by training as artifacts : the machine learning, but also the scaler, vectorizer, imputer,
or whatever object fitted on data you create in training and thatis used in inference).

Note: If you want to log a PipelineML object in m1f1ow programatically, you can use the following code snippet:

from pathlib import Path
from kedro.framework.context import load_context
from kedro mlflow.mlflow import KedroPipelineModel

# pipeline_training is your PipelineML object, created as previsously
catalog = load_context (".").io

# artifacts are all the inputs of the inference pipelines that are persisted in the_
—catalog
pipeline_catalog = pipeline_training.extract_pipeline_catalog(cataloq)

artifacts = {name: Path (dataset._filepath) .resolve () .as_uri()
for name, dataset in pipeline_catalog._data_sets.items()
if name != pipeline_training.model_input_name}

mlflow.pyfunc.log_model (artifact_path="model",
python_model=KedroPipelineModel (pipeline_ml=pipeline_training,
catalog=pipeline_catalog),
artifacts=artifacts,
conda_env={"python": "3.7.0"})

4.4 Cli commands

441 cli
442 init

kedro mlflow init: this command is needed to initalize your project. You cannot run any other commands
before you run this one once. It performs 2 actions: - creates a ml1flow.yml configuration file in your conf/
base folder - replace the src/PYTHON_PACKAGE/run.py file by an updated version of the template. If your
template has been modified since project creation, a warning wil be raised. You can either run kedro mlflow
init —--force toignore this warning (but this will erase your run . py) or set hooks manually.

443 ui

kedro mlflow ui: this command opens the mlifiow UI (basically launches the ml1flow ui command with the
configuration of your m1flow.yml file)
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4.5 Configuration

The python objecti is KedroMlflowConfig and it can be filled through m1flow.yml.

More details are coming soon.
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* genindex
¢ modindex

¢ search
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