
kedro-mlflow
Release 0.4.0

Yolan Honoré-Rougé

Nov 03, 2020

CONTENTS

1 Introduction 1
1.1 Introduction . 1

1.1.1 What is Kedro? . 1
1.1.2 What is Mlflow? . 1
1.1.3 A brief comparison between Kedro and Mlflow . 2

1.1.3.1 Configuration and prototyping: Kedro 1 - 0 Mlflow 2
1.1.3.2 Versioning: Kedro 1 - 1 Mlflow . 2
1.1.3.3 Model packaging and service: Kedro 1 - 2 Mlflow 3
1.1.3.4 Conclusion: Use Kedro and add Mlflow for machine learning projects 3

1.2 Motivation . 3
1.2.1 When should I use kedro-mlflow? . 3
1.2.2 Why should I use kedro-mlflow ? . 3

1.2.2.1 Benchmark of existing solutions . 3
1.2.2.2 Enforcing Kedro principles . 4

1.3 Installation . 4
1.3.1 Pre-requisites . 4
1.3.2 Installation guide . 5
1.3.3 Check the installation . 5
1.3.4 Available commands . 5

2 Introduction 7
2.1 Example project . 7

2.1.1 Check your installation . 7
2.1.2 Install the toy project . 7

2.1.2.1 Installation with kedro>=0.16.3 . 7
2.1.2.2 Installation with kedro>=0.16.0, <=0.16.2 8

2.2 Install dependencies . 9
2.3 First steps with the plugins . 9

2.3.1 Initialize kedro-mlflow . 9
2.3.2 Run the pipeline . 11
2.3.3 Open the UI . 14

2.3.3.1 Parameters versioning . 16
2.3.3.2 Journal information . 18
2.3.3.3 Artifacts . 18

3 Introduction 19
3.1 Migration guide . 19

3.1.1 Migration from 0.3.0 to 0.4.0 . 19
3.1.1.1 Catalog entries . 19
3.1.1.2 Hooks . 19

i

3.1.1.3 KedroPipelineModel . 19
3.2 Scope . 20

3.2.1 In the scope of the tutorial . 20
3.2.2 Out of scope of the tutorial . 20

3.3 Setup your Kedro project . 20
3.3.1 Check the installation . 20
3.3.2 Create a kedro project . 21
3.3.3 Activate kedro-mlflow in your kedro project . 21

3.3.3.1 Setting up the kedro-mlflow configuration file . 21
3.3.3.2 Declaring kedro-mlflow hooks . 21

3.4 Configure mlflow inside your project . 23
3.4.1 Context: mlflow tracking under the hood . 23
3.4.2 The mlflow.yml file . 23

3.5 Parameters versioning . 24
3.5.1 Automatic parameters versioning . 24
3.5.2 How does MlflowNodeHook operates under the hood? 24
3.5.3 Frequently Asked Questions . 24

3.5.3.1 Will parameters be recorded if the pipeline fails during execution? 24
3.5.3.2 How are parameters detected by the plugin? . 25
3.5.3.3 How can I register a parameter if I use a TemplatedConfigLoader? 25

3.6 Versioning Kedro DataSets . 25
3.6.1 What is artifact tracking? . 25
3.6.2 How to version data in a kedro project? . 26
3.6.3 Frequently asked questions . 26

3.6.3.1 Can I pass extra parameters to the MlflowArtifactDataSet for finer control? 26
3.6.3.2 Can I use the MlflowArtifactDataSet in interactive mode? 26
3.6.3.3 How do I upload an artifact to a non local destination (e.g. an S3 or blog storage)? . 27
3.6.3.4 Can I log an artifact in a specific run? . 27
3.6.3.5 Can I create a remote folder/subfolders architecture to organize the artifacts ? . . . 27

3.7 Version model . 27
3.7.1 What is model tracking? . 27
3.7.2 How to track models using MLflow in Kedro project? . 28
3.7.3 Frequently asked questions? . 28

3.7.3.1 How is it working under the hood? . 28
3.7.3.2 How can I track a custom MLflow model flavor? 29

3.8 Version metrics . 29
3.8.1 What is metric tracking? . 29
3.8.2 How to version metrics in a kedro project? . 29
3.8.3 How to return metrics from a node? . 29

3.9 Opening the UI . 30
3.9.1 The mlflow user interface . 30
3.9.2 The kedro-mlflow helper . 30

3.10 Pipeline packaging . 31

4 Introduction 33
4.1 New DataSet . 33

4.1.1 MlflowArtifactDataSet . 33
4.1.2 Models DataSets . 34

4.1.2.1 MlflowModelLoggerDataSet . 34
4.1.2.2 MlflowModelSaverDataSet . 35

4.2 Hooks . 35
4.2.1 MlflowPipelineHook . 35
4.2.2 MlflowNodeHook . 36

4.3 Pipelines . 36

ii

4.3.1 PipelineML and pipeline_ml_factory . 36
4.4 Cli commands . 37

4.4.1 cli . 37
4.4.2 init . 37
4.4.3 ui . 38

4.5 Configuration . 38

5 Indices and tables 39

iii

iv

CHAPTER

ONE

INTRODUCTION

1.1 Introduction

1.1.1 What is Kedro?

Kedro is a python package which facilitates the prototyping of data pipelines. It aims at implementing software
engineering best practices (separation between I/O and compute, abstraction, templating. . .). It is specifically useful
for machine learning projects since it provides within the same interface both interactive objects for the exploration
phase and Command Line Interface (CLI) and configuration files for the production phase. This makes the transition
from exploration to production as smooth as possible.

For more details, see Kedro’s official documentation.

1.1.2 What is Mlflow?

Mlflow is a library which helps managing the lifecycle of machine learning models. Mlflow provides 4 modules:

• Mlflow Tracking: This modules focuses on experiment versioning. The goal is to store all the objects
needed to reproduce any code execution. This includes code through version control, but also parameters and
artifacts (i.e objects fitted on data like encoders, binarizers. . .). These elements vary wildly during machine
learning experimentation phase. Mlflow also enable to track metrics to evaluate runs, and provides a User
Interface (UI) to browse the different runs and compare them.

• Mlflow Projects: This module provides a configuration files and CLI to enable reproducible execution of
pipelines in production phase.

• Mlflow Models: This module defines a standard way for packaging machine learning models, and provides
built-in ways to serve registered models. Such standardization enable to serve these models across a wide range
of tools.

• Mlflow Model Registry: This modules aims at monitoring deployed models. The registry manages the
transition between different versions of the same model (when the dataset is retrained on new data, or when
parameters are updated) while it is in production.

For more details, see Mlflow’s official documentation.

1

https://kedro.readthedocs.io/en/stable/01_introduction/01_introduction.html
https://www.mlflow.org/docs/latest/index.html

kedro-mlflow, Release 0.4.0

1.1.3 A brief comparison between Kedro and Mlflow

While Kedro and Mlflow do not compete in the same field, they provide some overlapping functionalities. Mlflow
is specifically dedicated to machine learning and its lifecycle management, while Kedro focusing on data pipeline
development. Below chart compare the different functionalities:

We can draw the following conclusions from the chart, discussed hereafter.

1.1.3.1 Configuration and prototyping: Kedro 1 - 0 Mlflow

Mlflow and Kedro are essentially overlapping on the way they offer a dedicated configuration files for running the
pipeline from CLI. However:

• Mlflow provides a single configuration file (the MLProject) where all elements are declared (data, param-
eters and pipelines). Its goal is mainly to enable CLI execution of the project, but it is not very flexible. In my
opinion, this file is production oriented and is not really intended to use for exploration.

• Kedro offers a bunch of files (catalog.yml, parameters.yml, pipeline.py) and their associated
abstraction (AbstractDataSet, DataCatalog, Pipeline and node objects). Kedro is much more
opinionated: each object has a dedicated place (and only one!) in the template. This makes the framework both
exploration and production oriented. The downside is that it could make the learning curve a bit sharper since
a newcomer has to learn all Kedro specifications. It also provides a kedro-viz plugin to visualize the DAG
interactively, which is particularly handy in medium-to-big projects.

1.1.3.2 Versioning: Kedro 1 - 1 Mlflow

The Kedro Journal aims at reproducibility, but is not focused on machine learning. The Journal keeps track of two
elements:

• the CLI arguments , including on the fly parameters. This makes the command used to run the pipeline fully
reproducible.

• the AbstractVersionedDataSet for which versioning is activated. It consists in copying the data whom
versioned argument is True when the save method of the AbstractVersionedDataSet is called.
This approach suffers from two main drawbacks:

– the configuration is assumed immutable (including parameters), which is not realistic ni machine learning
projects where they are very volatile. To fix this, the git sha has been recently added to the Journal,
but it has still some bugs in my experience (including the fact that the current git sha is logged even if
the pipeline is ran with uncommitted change, which prevents reproducibility). This is still recent and will
likely evolve in the future.

– there is no support for browsing old runs, which prevents cleaning the database with old and unused
datasets, compare runs between each other. . .

On the other hand, Mlflow:

• distinguishes between artifacts (i.e. any data file), metrics (integers that may evolve over time) and parame-
ters. The logging is very straightforward since there is a one-liner function for logging the desired type. This
separation makes further manipulation easier.

• offers a way to configure the logging in a database through the mlflow_tracking_uri parameter. This
database-like logging comes with easy querying of different runs through a client (for instance “find the most
recent run with a metric at least above a given threshold” is immediate with Mlflow but hacky in Kedro).

• comes with a User Interface (UI) which enable to browse / filter / sort the runs, display graphs of the metrics,
render plots. . . This make the run management much easier than in Kedro.

2 Chapter 1. Introduction

https://kedro.readthedocs.io/en/stable/04_user_guide/13_journal.html
https://github.com/quantumblacklabs/kedro/issues/406
https://github.com/quantumblacklabs/kedro/issues/406
https://www.mlflow.org/docs/latest/python_api/mlflow.tracking.html#mlflow.tracking.MlflowClient
https://mlflow.org/docs/latest/tracking.html#id7

kedro-mlflow, Release 0.4.0

• has a command to reproduce exactly the run from a given git sha, which is not possible in Kedro.

1.1.3.3 Model packaging and service: Kedro 1 - 2 Mlflow

Kedro offers a way to package the code to make the pipelines callable, but does not manage specifically machine
learning models.

Mlflow offers a way to store machine learning models with a given “flavor”, which is the minimal amount of infor-
mation necessary to use the model for prediction:

• a configuration file

• all the artifacts, i.e. the necessary data for the model to run (including encoder, binarizer. . .)

• a loader

• a conda configuration through an environment.yml file

When a stored model meets these requirements, Mlflow provides built-in tools to serve the model (as an API or for
batch prediction) on many machine learning tools (Microsoft Azure ML, Amazon Sagemaker, Apache SparkUDF)
and locally.

1.1.3.4 Conclusion: Use Kedro and add Mlflow for machine learning projects

In my opinion, Kedro’s will to enforce software engineering best practice makes it really useful for machine learning
teams. It is extremely well documented and the support is excellent, which makes it very user friendly even for people
with no CS background. However, it lacks some machine learning-specific functionalities (better versioning, model
service), and it is where Mlflow fills the gap.

1.2 Motivation

1.2.1 When should I use kedro-mlflow?

Basically, you should use kedro-mlflow in any Kedro project which involves machine learning / deep learning.
As stated in the introduction, Kedro’s current versioning (as of version 0.16.1) is not sufficient for machine learning
projects: it lacks a UI and a run management system. Besides, the KedroPipelineModel ability to serve a kedro
pipeline as an API or a batch in one line of code is a great addition for collaboration and transition to production.

If you do not use Kedro or if you do pure data manipulation which does not involve machine learning, this plugin is
not what you are seeking for ;)

1.2.2 Why should I use kedro-mlflow ?

1.2.2.1 Benchmark of existing solutions

This paragraph gives a (quick) overview of existing solutions for mlflow integration inside Kedro projects.

Mlflow is very simple to add to any existing code. It is a 2-step process:

• add log_{XXX} (either param, artifact, metric or model) functions where they are needed inside the code

• add a MLProject at the root of the project to enable CLI execution. This file must contain all the possible
execution steps (like the pipeline.py in a kedro project).

1.2. Motivation 3

https://github.com/quantumblacklabs/kedro/issues/297

kedro-mlflow, Release 0.4.0

Including mlflow inside a kedro project is consequently very easy: the logging functions can be added in the
code, and the MLProject is very simple and is composed almost only of the kedro run command. You can find
examples of such implementation:

• the medium paper by QuantumBlack employees.

• the associated github repo

• other examples can be found on Github, but AFAIK all of them follow the very same principles.

1.2.2.2 Enforcing Kedro principles

Above implementations have the advantage of being very straightforward and mlflow compliant, but they break several
Kedro principles:

• the MLFLOW_TRACKING_URI which registers the database where runs are logged is declared inside the code
instead of a configuration file, which hinders portability across environments and makes transition to produc-
tion more difficult

• the logging of different elements can be put in many places in the Kedro template (in the code of any function
involved in a node, in a Hook, in the ProjectContext, in a transformer. . .). This is not compliant
with the Kedro template where any object has a dedicated location. We want to avoid the logging to occur
anywhere because:

– it is very error-prone (one can forget to log one parameter)

– it is hard to modify (if you want to remove / add / modify an mlflow action you have to find it in the code)

– it prevents reuse (re-usable function must not contain mlflow specific code unrelated to their functional
specificities, only their execution must be tracked).

kedro-mlflow enforces these best practices while implementing a clear interface for each mlflow action in Kedro
template. Below chart maps the mlflow action to perform with the Python API provided by kedro-mlflow and the
location in Kedro template where the action should be performed.

In the current version (kedro_mlflow=0.4.0), kedro-mlflow does not provide interface to set tags or log
models outside a Kedro Pipeline. These decisions are subject to debate and design decisions (for instance, metrics
are often updated in a loop during each epoch / training iteration and it does not always make sense to register the
metric between computation steps, e.g. as a an I/O operation after a node run).

Note: the version 0.4.0 does not need any MLProject file to use mlflow inside your Kedro project. As seen in the
introduction, this file overlaps with Kedro configuration files.

1.3 Installation

1.3.1 Pre-requisites

I strongly recommend to use conda (a package manager) to create an environment in order to avoid version conflicts
between packages.

I also recommend to read Kedro installation guide to set up your Kedro project.

4 Chapter 1. Introduction

https://medium.com/quantumblack/deploying-and-versioning-data-pipelines-at-scale-942b1d81b5f5
https://github.com/tgoldenberg/kedro-mlflow-example
https://kedro.readthedocs.io/en/stable/02_getting_started/01_prerequisites.html

kedro-mlflow, Release 0.4.0

1.3.2 Installation guide

The plugin is compatible with kedro>=0.16.0. Since Kedro tries to enforce backward compatibility, it will very
likely remain compatible with further versions.

First, install Kedro from PyPI and ensure you have a 0.16.0 version:

pip install --upgrade "kedro>=0.16.0,<0.17.0"

Second, install kedro-mlflow plugin from PyPi:

pip install --upgrade kedro-mlflow

You may want to install the develop branch which has unreleased features:

pip install git+https://github.com/Galileo-Galilei/kedro-mlflow.git@develop

1.3.3 Check the installation

Type kedro info in a terminal to check the installation. If it has succeeded, you should see the following ascii art:

_ _
| | _____ __| |_ __ ___
| |/ / _ \/ _` | '__/ _ \
| < __/ (_| | | | (_) |
|_|____|__,_|_| ___/
v0.16.2

kedro allows teams to create analytics
projects. It is developed as part of
the Kedro initiative at QuantumBlack.

Installed plugins:
kedro_mlflow: 0.4.0 (hooks:global,project)

The version 0.4.0 of the plugin is installed and has both global and project commands.

That’s it! You are now ready to go!

1.3.4 Available commands

With the kedro mlflow -h command outside of a kedro project, you now see the following output:

Usage: kedro mlflow [OPTIONS] COMMAND [ARGS]...

Use mlflow-specific commands inside kedro project.

Options:
-h, --help Show this message and exit.

Commands:
new Create a new kedro project with updated template.

1.3. Installation 5

kedro-mlflow, Release 0.4.0

6 Chapter 1. Introduction

CHAPTER

TWO

INTRODUCTION

2.1 Example project

2.1.1 Check your installation

Create a conda environment and kedro-mlflow (this will automatically install kedro>=0.16.0).

conda create -n km_example python=3.6.8 --yes
conda activate km_example
pip install kedro-mlflow

2.1.2 Install the toy project

For this end to end example, we will use the kedro starter with the iris dataset.

We use this project because:

• it covers most of the common use cases

• it is compatible with older version of Kedro so newcomers are used to it

• it is maintained by Kedro maintainers and therefore enforces some best practices.

2.1.2.1 Installation with kedro>=0.16.3

The default starter is now called “pandas-iris”. In a new console, enter:

kedro new --starter=pandas-iris

Answer Kedro Mlflow Example, km-example and km_example to the three setup questions of a new kedro
project:

Project Name:
=============
Please enter a human readable name for your new project.
Spaces and punctuation are allowed.
[New Kedro Project]: Kedro Mlflow Example

Repository Name:
================
Please enter a directory name for your new project repository.
Alphanumeric characters, hyphens and underscores are allowed.

(continues on next page)

7

https://kedro.readthedocs.io/en/latest/02_getting_started/05_starters.html#creating-new-projects-with-kedro-starters
https://github.com/quantumblacklabs/kedro-starter-pandas-iris

kedro-mlflow, Release 0.4.0

(continued from previous page)

Lowercase is recommended.
[kedro-mlflow-example]: km-example

Python Package Name:
====================
Please enter a valid Python package name for your project package.
Alphanumeric characters and underscores are allowed.
Lowercase is recommended. Package name must start with a letter or underscore.
[kedro_mlflow_example]: km_example

2.1.2.2 Installation with kedro>=0.16.0, <=0.16.2

With older versions of Kedro, the starter option is not available, but this kedro new provides an “Include example”
question. Answer y to this question to get the same starter as above. In a new console, enter:

kedro new

Answer Kedro Mlflow Example, km-example, km_example and y to the four setup questions of a new
kedro project:

Project Name:
=============
Please enter a human readable name for your new project.
Spaces and punctuation are allowed.
[New Kedro Project]: Kedro Mlflow Example

Repository Name:
================
Please enter a directory name for your new project repository.
Alphanumeric characters, hyphens and underscores are allowed.
Lowercase is recommended.
[kedro-mlflow-example]: km-example

Python Package Name:
====================
Please enter a valid Python package name for your project package.
Alphanumeric characters and underscores are allowed.
Lowercase is recommended. Package name must start with a letter or underscore.
[kedro_mlflow_example]: km_example

Generate Example Pipeline:
==========================
Do you want to generate an example pipeline in your project?
Good for first-time users. (default=N)
[y/N]: y

8 Chapter 2. Introduction

kedro-mlflow, Release 0.4.0

2.2 Install dependencies

Move to the project directory:

cd km-example

Install the project dependencies:

pip install -r src/requirements.txt
pip install --upgrade kedro-mlflow==0.4.0

Warning: Do not use kedro install commands does not seem to install the packages in your activated
environment.

2.3 First steps with the plugins

2.3.1 Initialize kedro-mlflow

Run

kedro mlflow init

You have the following message:

'conf/base/mlflow.yml' successfully updated.

The conf/base folder is updated:

2.2. Install dependencies 9

kedro-mlflow, Release 0.4.0

If you have configured your own mlflow server, you can specify the tracking uri in the mlflow.yml (replace the
highlighted line below:):

10 Chapter 2. Introduction

kedro-mlflow, Release 0.4.0

2.3.2 Run the pipeline

Open a new command and launch

kedro run

If the pipeline executes properly, you should see the following log:

2020-07-13 21:29:24,939 - kedro.versioning.journal - WARNING - Unable to git describe
→˓path/to/km-example
2020-07-13 21:29:25,401 - kedro.io.data_catalog - INFO - Loading data from `example_
→˓iris_data` (CSVDataSet)...
2020-07-13 21:29:25,562 - kedro.io.data_catalog - INFO - Loading data from
→˓`params:example_test_data_ratio` (MemoryDataSet)...
2020-07-13 21:29:25,969 - kedro.pipeline.node - INFO - Running node: split_
→˓data([example_iris_data,params:example_test_data_ratio]) -> [example_test_x,example_
→˓test_y,example_train_x,example_train_y]
2020-07-13 21:29:26,053 - kedro.io.data_catalog - INFO - Saving data to `example_
→˓train_x` (MemoryDataSet)...
2020-07-13 21:29:26,368 - kedro.io.data_catalog - INFO - Saving data to `example_
→˓train_y` (MemoryDataSet)...
2020-07-13 21:29:26,484 - kedro.io.data_catalog - INFO - Saving data to `example_test_
→˓x` (MemoryDataSet)...

(continues on next page)

2.3. First steps with the plugins 11

kedro-mlflow, Release 0.4.0

(continued from previous page)

2020-07-13 21:29:26,486 - kedro.io.data_catalog - INFO - Saving data to `example_test_
→˓y` (MemoryDataSet)...
2020-07-13 21:29:26,610 - kedro.runner.sequential_runner - INFO - Completed 1 out of
→˓4 tasks
2020-07-13 21:29:26,850 - kedro.io.data_catalog - INFO - Loading data from `example_
→˓train_x` (MemoryDataSet)...
2020-07-13 21:29:26,851 - kedro.io.data_catalog - INFO - Loading data from `example_
→˓train_y` (MemoryDataSet)...
2020-07-13 21:29:26,965 - kedro.io.data_catalog - INFO - Loading data from
→˓`parameters` (MemoryDataSet)...
2020-07-13 21:29:26,972 - kedro.pipeline.node - INFO - Running node: train_
→˓model([example_train_x,example_train_y,parameters]) -> [example_model]
2020-07-13 21:29:27,756 - kedro.io.data_catalog - INFO - Saving data to `example_
→˓model` (MemoryDataSet)...
2020-07-13 21:29:27,763 - kedro.runner.sequential_runner - INFO - Completed 2 out of
→˓4 tasks
2020-07-13 21:29:28,141 - kedro.io.data_catalog - INFO - Loading data from `example_
→˓model` (MemoryDataSet)...
2020-07-13 21:29:28,161 - kedro.io.data_catalog - INFO - Loading data from `example_
→˓test_x` (MemoryDataSet)...
2020-07-13 21:29:28,670 - kedro.pipeline.node - INFO - Running node: predict([example_
→˓model,example_test_x]) -> [example_predictions]
2020-07-13 21:29:29,002 - kedro.io.data_catalog - INFO - Saving data to `example_
→˓predictions` (MemoryDataSet)...
2020-07-13 21:29:29,248 - kedro.runner.sequential_runner - INFO - Completed 3 out of
→˓4 tasks
2020-07-13 21:29:29,433 - kedro.io.data_catalog - INFO - Loading data from `example_
→˓predictions` (MemoryDataSet)...
2020-07-13 21:29:29,730 - kedro.io.data_catalog - INFO - Loading data from `example_
→˓test_y` (MemoryDataSet)...
2020-07-13 21:29:29,911 - kedro.pipeline.node - INFO - Running node: report_
→˓accuracy([example_predictions,example_test_y]) -> None
2020-07-13 21:29:30,056 - km_example.pipelines.data_science.nodes - INFO - Model
→˓accuracy on test set: 100.00%
2020-07-13 21:29:30,214 - kedro.runner.sequential_runner - INFO - Completed 4 out of
→˓4 tasks
2020-07-13 21:29:30,372 - kedro.runner.sequential_runner - INFO - Pipeline execution
→˓completed successfully.

Since we have kept the default value of the mlflow.yml, the tracking uri (the place where runs are recorded) is a
local mlruns folder which has just been created with the execution:

12 Chapter 2. Introduction

kedro-mlflow, Release 0.4.0

2.3. First steps with the plugins 13

kedro-mlflow, Release 0.4.0

2.3.3 Open the UI

Launch the ui:

kedro mlflow ui

And open the following adress in your favorite browser

http://localhost:5000/

Click now on the last run executed, you will land on this page:

14 Chapter 2. Introduction

kedro-mlflow, Release 0.4.0

2.3. First steps with the plugins 15

kedro-mlflow, Release 0.4.0

2.3.3.1 Parameters versioning

Note that the parameters have been recorded automagically. Here, two parameters format are used:

1. The parameter example_test_data_ratio, which is called in the pipeline.py file with the params:
prefix

2. the dictionary of all parameters in parameters.yml which is a reserved key word in Kedro. Note that this
is bad practice because you cannot know which parameters are really used inside the function called. Another
problem is that it can generate too long parameters names and lead to mlflow errors.

You can see that these are effectively the registered parameters in the pipeline with the kedro-viz plugin:

pip install kedro-viz
kedro viz

Open your browser at the following adress:

http://localhost:4141/

You should see the following graph:

16 Chapter 2. Introduction

kedro-mlflow, Release 0.4.0

which indicates clearly which parameters are logged (in the red boxes with the “parameter” icon).

2.3. First steps with the plugins 17

kedro-mlflow, Release 0.4.0

2.3.3.2 Journal information

The informations provided by the Kedro’s Journal are also recorded as tags in the mlflow ui in order to make
reproducible. In particluar, the exact command used for running the pipeline and the kedro version used are stored.

2.3.3.3 Artifacts

With this run, artifacts are empty. This is expected: mlflow does not know what it should log and it will not log all
your data by default. However, you want to save your model (at least) or your run is likely useless!

First, open the catalog.yml file which should like this:

And persist the model as a pickle with the MlflowArtifactDataSet class:

Reopen the ui, select the last run and see that the file was uploaded:

This works for any type of file (including images with MatplotlibWriter) and the UI even offers a preview for
png and csv, which is really convenient to compare runs.

Note: Mlflow offers specific logging for machine learning models that may be better suited for your use case, see
MlflowModelLoggerDataSet

18 Chapter 2. Introduction

CHAPTER

THREE

INTRODUCTION

3.1 Migration guide

This page explains how to migrate between versions with breaking changes, if you had an existing kedro project.

3.1.1 Migration from 0.3.0 to 0.4.0

3.1.1.1 Catalog entries

Replace the follwoing entries:

3.1.1.2 Hooks

Hooks are now auto-registered if you use kedro>=0.16.4. You can remove the following entry from your run.
py:

hooks = (
MlflowPipelineHook(),
MlflowNodeHook()

)

3.1.1.3 KedroPipelineModel

Be aware that if you had trained saved a pipeline as a mlflow model with pipeline_ml_factory, retraining this
pipeline with kedro-mlflow==0.4.0 will lead to a new behaviour. Let assume the name of your output in the
DataCatalog was predictions, the output of a registered model will be modified from:

{
predictions:

{
<your model-predictions>

}
}

to:

{
<your model-predictions>

}

19

kedro-mlflow, Release 0.4.0

Thus, parsing the predictions of this model must be updated accordingly.

3.2 Scope

3.2.1 In the scope of the tutorial

This tutorial adresses the following items:

1. How to include kedro-mlflow capabilities in a Kedro project:

1. create a new kedro project with updated template

2. update an existing kedro project

2. Configure mlflow inside a “mlflow initialised” Kedro project

3. Version and track objects during execution with mlflow:

1. Version parameters inside a Kedro project

2. Version data inside a Kedro project

3. (COMING in 0.3.0) Version machine learning models inside a Kedro project

4. (COMING in 0.3.0) Version metrics inside a Kedro project

5. Open mlflow ui with project configuration

6. Package and serve a Kedro pipeline

This is a step by step tutorial and it is recommended to read the different chapters above order, but not mandatory.

3.2.2 Out of scope of the tutorial

Some advanced capabilities are adressed in the advanced use section:

• (COMING in 0.3.0) launching a Kedro project directly with mlflow through the MLProject file.

3.3 Setup your Kedro project

3.3.1 Check the installation

Type kedro info in a terminal to check if the plugin is properly discovered by Kedro. If the installation has
succeeded, you should see the following ascii art:

_ _
| | _____ __| |_ __ ___
| |/ / _ \/ _` | '__/ _ \
| < __/ (_| | | | (_) |
|_|____|__,_|_| ___/
v<kedro-version>

kedro allows teams to create analytics
projects. It is developed as part of
the Kedro initiative at QuantumBlack.

(continues on next page)

20 Chapter 3. Introduction

kedro-mlflow, Release 0.4.0

(continued from previous page)

Installed plugins:
kedro_mlflow: <kedro-mlflow-version> (hooks:global,project)

The version <kedro-mlflow-version> of the plugin is installed ans has both global and project commands.

That’s it! You are now ready to go!

3.3.2 Create a kedro project

This plugins must be used in an existing kedro project. If you do not have a kedro project yet, you can create it with
kedro new command. See the kedro docs for a tutorial.

For this tutorial and if you do not have a real-world project, I strongly suggest that you accept to include the proposed
example to make a demo of this plugin out of the box.

3.3.3 Activate kedro-mlflow in your kedro project

In order to use the kedro-mlflow plugin, you need to set up the its configuration and declare its hooks. those 2
actions are detailled in the following paragraph.

3.3.3.1 Setting up the kedro-mlflow configuration file

kedro-mlflow is configured through an mlflow.yml file. The recommended way to initialize the mlflow.yml
is by using the kedro-mlflow CLI. It is mandatory for the plugin to work.

Set the working directory at the root of your kedro project (i.e. the folder with the .kedro.yml file)

cd path/to/your/project

Run the init command :

kedro mlflow init

you should see the following message:

'conf/base/mlflow.yml' successfully updated.

3.3.3.2 Declaring kedro-mlflow hooks

kedro_mlflow hooks implementations must be registered with Kedro. There are three ways of registring hooks.

Note that you must register the two hooks provided by kedro-mlflow (MlflowPipelineHook and
MlflowNodeHook) for the plugin to work.

3.3. Setup your Kedro project 21

https://kedro.readthedocs.io/en/latest/02_getting_started/03_new_project.html
https://kedro.readthedocs.io/en/latest/07_extend_kedro/04_hooks.html?highlight=hooks

kedro-mlflow, Release 0.4.0

- Declaring hooks through auto-discovery (for kedro>=0.16.4)

If you use kedro>=0.16.4, kedro-mlflow hooks are auto-registered automatically by default without any action
from your side. You can disable this behaviour in your .kedro.yml or your pyproject.toml file.

- Declaring hooks through code, in ProjectContext (for kedro>=0.16.0, <=0.16.3)

By declaring mlflow_pipeline_hook and mlflow_node_hook in (src/package_name/run.py)
ProjectContext:

from kedro_mlflow.framework.hooks import mlflow_pipeline_hook, mlflow_node_hook

class ProjectContext(KedroContext):
"""Users can override the remaining methods from the parent class here,
or create new ones (e.g. as required by plugins)
"""

project_name = "<project-name>"
project_version = "0.16.X" # must be >=0.16.0
hooks = (

mlflow_pipeline_hook,
mlflow_node_hook

)

- Declaring hooks through static configuration in .kedro.yml or pyproject.toml [Only for kedro
>= 0.16.5 if you have disabled auto-registration]

In case you have disabled hooks for plugin, you can add them manually by declaring mlflow_pipeline_hook
and mlflow_node_hook in .kedro.yml :

context_path: km_example.run.ProjectContext
project_name: "km_example"
project_version: "0.16.5"
package_name: "km_example"
hooks:

- <your-project>.hooks.project_hooks
- kedro_mlflow.framework.hooks.mlflow_pipeline_hook
- kedro_mlflow.framework.hooks.mlflow_node_hook

Or by declaring mlflow_pipeline_hook and mlflow_node_hook in pyproject.toml :

<your-project>/pyproject.toml
[tool.kedro]
hooks=["kedro_mlflow.framework.hooks.mlflow_pipeline_hook",

"kedro_mlflow.framework.hooks.mlflow_node_hook"]

22 Chapter 3. Introduction

https://kedro.readthedocs.io/en/latest/07_extend_kedro/04_hooks.html#disable-auto-registered-plugins-hooks

kedro-mlflow, Release 0.4.0

3.4 Configure mlflow inside your project

3.4.1 Context: mlflow tracking under the hood

Mlflow is composed of four modules which are described in the introduction section. The ain module is “tracking”.
The goal of this module is to keep track of every varying parameters across different code execution (parameters,
metrics and artifacts). The following schema describes how this modules operates under the hood:

Basically, this schema shows that mlflow separates WHERE the artifacts are logged from HOW they are logged inside
your code. You need to setup your mlflow tracking server separately from your code, and then each logging will send
a request to the tracking server to store the elements you want to track in the appropriate location. The davatage of
such a setup are numerous:

• once the mlflow tracking server is setup, there is songle paramter to set before logging which is the tracking
server uri. This makes configuration very easy in your project.

• since the different storage locations are well identified, it is easy to define custom solutions for each of them.
They can be database or even local folders.

The rationale behind the separation of the backend store and the artifacts store is that artifacts can be very big and are
duplicated across runs, so they need a special management with extensible storage. This is typically cloud storage like
AWS S3 or Azure Blob storage.

3.4.2 The mlflow.yml file

kedro-mlflow needs the tracking uri of your mlflow tracking server to operate properly . The mlflow.yml file
must have the mlflow_tracking_uri key with a valid mlflow_tracking_uri associated value. The mlflow.yml
default have this keys set to mlruns. This will create a mlruns folder locally at the root of your kedro project and
enable you to use the plugin without any setup of a mlflow tracking server.

mlflow_tracking_uri: mlruns

This is the only mandatory key in the mlflow.yml file, but there are many others that provides fine-grained control on
your mlflow setup. Please see the mlflow.yml description for further details.

3.4. Configure mlflow inside your project 23

https://mlflow.org/docs/latest/tracking.html#mlflow-tracking-servers
https://mlflow.org/docs/latest/tracking.html#id10
https://mlflow.org/docs/latest/tracking.html#id10
https://mlflow.org/docs/latest/tracking.html#where-runs-are-recorded

kedro-mlflow, Release 0.4.0

3.5 Parameters versioning

3.5.1 Automatic parameters versioning

Parameters versioning is automatic when the MlflowNodeHook is added to the hook list of the
ProjectContext. In kedro-mlflow==0.4.0, the mlflow.yml configuration file has a parameter called
flatten_dict_params which enables to log as distinct parameters the (key, value) pairs of a ```Dict`` parameter.

You do not need any additional configuration to benefit from parameters versioning.

3.5.2 How does MlflowNodeHook operates under the hood?

The medium post which introduces hooks explains in detail the differents ex-
ecution steps Kedro executes when the user calls the kedro run command.

The MlflowNodeHook registers the parameters before each node (entry point number 3 on above picture) by calling
```mlflow.log_parameter(param_name, param_value)`` on each parameters of the node.

3.5.3 Frequently Asked Questions

3.5.3.1 Will parameters be recorded if the pipeline fails during execution?

The parameters are registered node by node (and not in a single batch at the beginning of the execution). If the pipeline
fails in the middle of its execution, the parameters of the nodes who have been run will be recorded, but not the
parameters of non executed nodes.

24 Chapter 3. Introduction

https://medium.com/quantumblack/introducing-kedro-hooks-fd5bc4c03ff5


kedro-mlflow, Release 0.4.0

3.5.3.2 How are parameters detected by the plugin?

The hook detects parameters through their prefix params: or the value parameters. These are the reserved
keywords used by Kedro to define parameters in the pipeline.py file(s).

3.5.3.3 How can I register a parameter if I use a TemplatedConfigLoader?

If you use a TemplatedConfigLoader to enable dynamic parameters contruction at runtime or dependency be-
tween configuration files, and if we assume your src/<project-name>/run.py file looks like:

from kedro.config import TemplatedConfigLoader # new import
from datetime import date

class ProjectContext(KedroContext):
def _create_config_loader(self, conf_paths: Iterable[str]) ->

→˓TemplatedConfigLoader:
return TemplatedConfigLoader(

conf_paths,
globals_pattern="*globals.yml", # read the globals dictionary from

→˓project config
globals_dict={ # extra keys to add to the globals dictionary, take

→˓precedence over globals_pattern
execution_date: date.today()
},

)

Then you need to add this entry in your conf/<env>/parameters to ensure that the parameter will be properly
recorded:

execution_date: ${execution_date}

3.6 Versioning Kedro DataSets

3.6.1 What is artifact tracking?

Mlflow defines artifacts as “any data a user may want to track during code execution”. This includes, but is not limited
to:

• data needed for the model (e.g encoders, vectorizer, the machine learning model itself. . . )

• graphs (e.g. ROC or PR curve, importance variables, margins, confusion matrix. . . )

Artifacts is a very flexible and convenient way to “bind” any data type to your code execution. Mlflow process for
such binding is to :

1. Persist the data locally in the desired file format

2. Upload the data to the artifact store

3.6. Versioning Kedro DataSets 25

https://kedro.readthedocs.io/en/stable/03_tutorial/04_create_pipelines.html?highlight=params%3A#working-with-multiple-pipelines
https://kedro.readthedocs.io/en/stable/03_tutorial/04_create_pipelines.html?highlight=params%3A#working-with-multiple-pipelines
https://kedro.readthedocs.io/en/stable/04_user_guide/03_configuration.html?highlight=TemplatedConfigLoader#templating-configuration


kedro-mlflow, Release 0.4.0

3.6.2 How to version data in a kedro project?

kedro-mlflow introduces a new AbstractDataSet called MlflowArtifactDataSet. It is a wrapper for any
AbstractDataSet which decorates the underlying dataset save method and logs the file automatically in mlflow
as an artifact each time the save method is called.

Since it is a AbstractDataSet, it can be used with the YAML API. Assume that you have the following entry in
the catalog.yml:

my_dataset_to_version:
type: pandas.CSVDataSet
filepath: /path/to/a/destination/file.csv

You can change it to:

my_dataset_to_version:
type: kedro_mlflow.io.artifacts.MlflowArtifactDataSet
data_set:

type: pandas.CSVDataSet # or any valid kedro DataSet
filepath: /path/to/a/LOCAL/destination/file.csv # must be a local file,

→˓wherever you want to log the data in the end

and this dataset will be automatically versioned in each pipeline execution.

3.6.3 Frequently asked questions

3.6.3.1 Can I pass extra parameters to the MlflowArtifactDataSet for finer control?

The MlflowArtifactDataSet takes a data_set argument which is a python dictionary passed to the
__init__ method of the dataset declared in type. It means that you can pass any arguments accepted by the
underlying dataset in this dictionary. If you want to pass load_args and save_args in the previous example, add
them in the data_set argument:

my_dataset_to_version:
type: kedro_mlflow.io.artifacts.MlflowArtifactDataSet
data_set:

type: pandas.CSVDataSet # or any valid kedro DataSet
filepath: /path/to/a/local/destination/file.csv
load_args:

sep: ;
save_args:

sep: ;
# ... any other valid arguments for data_set

3.6.3.2 Can I use the MlflowArtifactDataSet in interactive mode?

Like all Kedro AbstractDataSet, MlflowArtifactDataSet is callable in the python API:

from kedro_mlflow.io.artifacts import MlflowArtifactDataSet
from kedro.extras.datasets.pandas import CSVDataSet
csv_dataset = MlflowArtifactDataSet(data_set={"type": CSVDataSet, # either a string
→˓"pandas.CSVDataSet" or the class

"filepath": r"/path/to/a/local/destination/file.
→˓csv"})
csv_dataset.save(data=pd.DataFrame({"a":[1,2], "b": [3,4]}))

26 Chapter 3. Introduction



kedro-mlflow, Release 0.4.0

3.6.3.3 How do I upload an artifact to a non local destination (e.g. an S3 or blog storage)?

The location where artifact will be stored does not depends of the logging function but rather on the artifact store
specified when configuring the mlflow server. Read mlflow documentation to see:

• how to configure a mlflow tracking server

• how to configure an artifact store with cloud storage.

You can also refer to this issue for further details.

In kedro-mlflow==0.4.0 you must configure these elements by yourself. Further releases will introduce helpers
for configuration.

3.6.3.4 Can I log an artifact in a specific run?

The MlflowArtifactDataSet has an extra argument run_id which specifies the run in which the artifact will
be logged. Be cautious, because this argument will take precedence over the current run when you call kedro
run, causing the artifact to be logged in another run that all the other data of the run.

my_dataset_to_version:
type: kedro_mlflow.io.artifacts.MlflowArtifactDataSet
data_set:

type: pandas.CSVDataSet # or any valid kedro DataSet
filepath: /path/to/a/local/destination/file.csv

run_id: 13245678910111213 # a valid mlflow run to log in. If None, default to
→˓active run

3.6.3.5 Can I create a remote folder/subfolders architecture to organize the artifacts ?

The MlflowArtifactDataSet has an extra argument run_id which specifies a remote subfolder where the
artifact will be logged. It must be a relative path.

my_dataset_to_version:
type: kedro_mlflow.io.artifacts.MlflowArtifactDataSet
data_set:

type: pandas.CSVDataSet # or any valid kedro DataSet
filepath: /path/to/a/local/destination/file.csv

artifact_path: reporting # relative path where the remote artifact must be
→˓stored. if None, saved in root folder.

3.7 Version model

3.7.1 What is model tracking?

MLflow allows to serialize and deserialize models to a common format, track those models in MLflow Tracking
and manage them using MLflow Model Registry. Many popular Machine / Deep Learning frameworks have built-in
support through what MLflow calls flavors. Even if there’s no flavor for your framework of choice, it’s easy to create
your own flavor and integrate it with MLflow.

3.7. Version model 27

https://www.mlflow.org/docs/latest/tracking.html#mlflow-tracking-servers
https://www.mlflow.org/docs/latest/tracking.html#id10
https://github.com/Galileo-Galilei/kedro-mlflow/issues/15
https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors
https://www.mlflow.org/docs/latest/models.html#custom-python-models
https://www.mlflow.org/docs/latest/models.html#custom-python-models


kedro-mlflow, Release 0.4.0

3.7.2 How to track models using MLflow in Kedro project?

kedro-mlflow introduces two new DataSet types that can be used in DataCatalog called
MlflowModelLoggerDataSet and MlflowModelSaverDataSet. The two have very similar API, except
that:

• the MlflowModelLoggerDataSet is used to load from and save to from the mlflow artifact store. It uses
optional run_id argument to load and save from a given run_id which must exists in the mlflow server you
are logging to.

• the MlflowModelSaverDataSet is used to load from and save to a given path. It uses the standard
filepath argument in the constructor of Kedro DataSets. Note that it does not log in mlflow.

Important: The MlflowModelSaverDataSet is a dataset for advanced users who want fine grained control and
eventually tweak mlflow models management. You very likely want to use the MlflowModelLoggerDataSet
instead.

Suppose you would like to register a scikit-learn model of your DataCatalog in mlflow, you can use the
following yaml API:

my_sklearn_model:
type: kedro_mlflow.io.models.MlflowModelLoggerDataSet
flavor: mlflow.sklearn

More informations on available parameters are available in the dedicated section.

You are now able to use my_sklearn_model in your nodes. Since this model is registered in mlflow, you can also
leverage the mlflow model serving abilities or predicting on batch abilities, as well as the mlflow models registry to
manage the lifecycle of this model.

3.7.3 Frequently asked questions?

3.7.3.1 How is it working under the hood?

For MlflowModelLoggerDataSet

During save, a model object from node output is logged to mlflow using log_model function of the specified
flavor. It is logged in the run_id run if specified and if there is no active run, else in the currently active mlflow
run. If the run_id is specified and there is an active run, the saving operation will fail. Consequently it will never
be possible to save in a specific mlflow run_id if you launch a pipeline with the kedro run command because the
MlflowPipelineHook creates a new run before each pipeline run.

During load, the model is retrieved from the run_id if specified, else it is retrieved from the mlflow active run. If
there is no mlflow active run, the loading fails. This will never happen if you are using the kedro run command,
because the MlflowPipelineHook creates a new run before each pipeline run.

For MlflowModelSaverDataSet

During save, a model object from node output is saved locally under specified filepath using save_model
function of the specified flavor.

When model is loaded, the latest version stored locally is read using load_model function of the specified flavor.
You can also load a model from a specific kedro run by specifying the version argument to the constructor.

28 Chapter 3. Introduction

docs%5Csource%5C05_python_objects%5C01_DataSets.md#mlflowmodelloggerdataset
https://www.mlflow.org/docs/latest/cli.html#mlflow-models-serve
https://www.mlflow.org/docs/latest/cli.html#mlflow-models-predict
https://www.mlflow.org/docs/latest/model-registry.html


kedro-mlflow, Release 0.4.0

3.7.3.2 How can I track a custom MLflow model flavor?

To track a custom MLflow model flavor you need to set the flavor parameter to import path of your custom flavor
and to specify a pyfunc workflow which can be set either to python_model or loader_module. The former is
the more high level and user friendly and is recommend by mlflow while the latter offer more control. We haven’t
tested the integration in kedro-mlflow of this second workflow extensively, and it should be use with caution.

my_custom_model:
type: kedro_mlflow.io.models.MlflowModelLoggerDataSet
flavor: my_package.custom_mlflow_flavor
pyfunc_workflow: python_model # or loader_module

3.8 Version metrics

3.8.1 What is metric tracking?

MLflow defines metrics as “Key-value metrics, where the value is numeric. Each metric can be updated throughout
the course of the run (for example, to track how your model’s loss function is converging), and MLflow records and
lets you visualize the metric’s full history”.

3.8.2 How to version metrics in a kedro project?

kedro-mlflow introduces a new AbstractDataSet called MlflowMetricsDataSet. It is a wrapper around a
dictionary with metrics which is returned by node and log metrics in MLflow.

Since it is a AbstractDataSet, it can be used with the YAML API. You can define it as:

my_model_metrics:
type: kedro_mlflow.io.metrics.MlflowMetricsDataSet

You can provide a prefix key, which is useful in situations like when you have multiple nodes producing metrics
with the same names which you want to distinguish. If you are using the MlflowPipelineHook, it will handle
that automatically for you by giving as prefix metrics data set name. In the example above the prefix would be
my_model_metrics.

Let’s look at an example with custom prefix:

my_model_metrics:
type: kedro_mlflow.io.metrics.MlflowMetricsDataSet
prefix: foo

3.8.3 How to return metrics from a node?

Let assume that you have node which doesn’t have any inputs and returns dictionary with metrics to log:

def metrics_node() -> Dict[str, Union[float, List[float]]]:
return {

"metric1": {"value": 1.1, "step": 1},
"metric2": [{"value": 1.1, "step": 1}, {"value": 1.2, "step": 2}]

}

As you can see above, kedro_mlflow.io.metrics.MlflowMetricsDataSet can take metrics as:

3.8. Version metrics 29

https://mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#pyfunc-create-custom-workflows
https://mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#which-workflow-is-right-for-my-use-case


kedro-mlflow, Release 0.4.0

• Dict[str, key],

• List[Dict[str, key]]

To store metrics we need to define metrics dataset in Kedro Catalog:

my_model_metrics:
type: kedro_mlflow.io.metrics.MlflowMetricsDataSet

Thanks to MlflowPipelineHook metrics stored in MLflow will have data set name as a prefix. In our example, it
would be: my_model_metrics.metric1, my_model_metrics.metric2.

We could provide a prefix manually:

my_model_metrics:
type: kedro_mlflow.io.metrics.MlflowMetricsDataSet
prefix: foo

which would result in metrics logged as foo.metric1 and foo.metric2.

Finally we need to use our metrics data set in pipeline:

def create_pipeline() -> Pipeline:
return Pipeline(node(

func=metrics_node,
inputs=None,
outputs="my_model_metrics",
name="log_metrics",

))

3.9 Opening the UI

3.9.1 The mlflow user interface

Mlflow offers a user interface (UI) that enable to browse the run history.

3.9.2 The kedro-mlflow helper

When you use a local storage for kedro mlflow, you can call a mlflow cli command to launch the UI if you do not have
a mlflow tracking server configured.

To ensure this UI is linked to the tracking uri specified configuration, kedro-mlflow offers the following command:

kedro mlflow ui

which is a wrapper for kedro ui command with the tracking uri of the mlflow.yml file.

Opens http://localhost:5000 in your browser to see the UI after calling previous command.

30 Chapter 3. Introduction

https://www.mlflow.org/docs/latest/quickstart.html#viewing-the-tracking-ui
https://www.mlflow.org/docs/latest/tracking.html#tracking-ui


kedro-mlflow, Release 0.4.0

3.10 Pipeline packaging

This features exists but is not documented yet. You can find:

• an explanation of the PipelineML class in the python objects section

• detailed explanations on this issue.

• an example of use in a user project in this repo.

3.10. Pipeline packaging 31

https://github.com/Galileo-Galilei/kedro-mlflow/issues/16
https://github.com/laurids-reichardt/kedro-examples/blob/kedro-mlflow-hotfix2/text-classification/src/text_classification/pipelines/pipeline.py


kedro-mlflow, Release 0.4.0

32 Chapter 3. Introduction



CHAPTER

FOUR

INTRODUCTION

4.1 New DataSet

4.1.1 MlflowArtifactDataSet

MlflowArtifactDataSet is a wrapper for any AbstractDataSet which logs the dataset automatically in
mlflow as an artifact when its save method is called. It can be used both with the YAML API:

my_dataset_to_version:
type: kedro_mlflow.io.artifacts.MlflowArtifactDataSet
data_set:

type: pandas.CSVDataSet # or any valid kedro DataSet
filepath: /path/to/a/local/destination/file.csv

or with additional parameters:

my_dataset_to_version:
type: kedro_mlflow.io.artifacts.MlflowArtifactDataSet
data_set:

type: pandas.CSVDataSet # or any valid kedro DataSet
filepath: /path/to/a/local/destination/file.csv
load_args:

sep: ;
save_args:

sep: ;
# ... any other valid arguments for data_set

run_id: 13245678910111213 # a valid mlflow run to log in. If None, default to
→˓active run

artifact_path: reporting # relative path where the artifact must be stored. if
→˓None, saved in root folder.

or with the python API:

from kedro_mlflow.io.artifacts import MlflowArtifactDataSet
from kedro.extras.datasets.pandas import CSVDataSet
csv_dataset = MlflowArtifactDataSet(data_set={"type": CSVDataSet,

"filepath": r"/path/to/a/local/destination/file.
→˓csv"})
csv_dataset.save(data=pd.DataFrame({"a":[1,2], "b": [3,4]}))

33



kedro-mlflow, Release 0.4.0

4.1.2 Models DataSets

4.1.2.1 MlflowModelLoggerDataSet

The MlflowModelLoggerDataSet accepts the following arguments:

• flavor (str): Built-in or custom MLflow model flavor module. Must be Python-importable.

• run_id (Optional[str], optional): MLflow run ID to use to load the model from or save the model to. It plays the
same role as “filepath” for standard mlflow datasets. Defaults to None.

• artifact_path (str, optional): the run relative path tothe model.

• pyfunc_workflow (str, optional): Either python_model or loader_module.See mlflow workflows.

• load_args (Dict[str, Any], optional): Arguments to load_model function from specified flavor. Defaults
to None.

• save_args (Dict[str, Any], optional): Arguments to log_model function from specified flavor. Defaults to
None.

You can either only specify the flavor:

from kedro_mlflow.io.models import MlflowModelLoggerDataSet
from sklearn.linear_model import LinearRegression

mlflow_model_logger=MlflowModelLoggerDataSet(flavor="mlflow.sklearn")
mlflow_model_logger.save(LinearRegression())

Let assume that this first model has been saved once, and you xant to retrieve it (for prediction for instance):

mlflow_model_logger=MlflowModelLoggerDataSet(flavor="mlflow.sklearn", run_id=<the-
→˓model-run-id>)
my_linear_regression=mlflow_model_logger.load()
my_linear_regression.predict(<data>) # will obviously fail if you have not fitted
→˓your model object first :)

You can also specify some logging parameters:

mlflow_model_logger=MlflowModelLoggerDataSet(
flavor="mlflow.sklearn",
run_id=<the-model-run-id>,
save_args={

"conda_env": {"python": "3.7.0"},
"input_example": data.iloc[0:5,:]
}

)
mlflow_model_logger.save(LinearRegression().fit(data))

34 Chapter 4. Introduction

https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#workflows
https://www.mlflow.org/docs/latest/python_api/mlflow.sklearn.html#mlflow.sklearn.log_model


kedro-mlflow, Release 0.4.0

4.1.2.2 MlflowModelSaverDataSet

The MlflowModelLoggerDataSet accepts the following arguments:

• flavor (str): Built-in or custom MLflow model flavor module. Must be Python-importable.

• filepath (str): Path to store the dataset locally.

• pyfunc_workflow (str, optional): Either python_model or loader_module. See mlflow workflows.

• load_args (Dict[str, Any], optional): Arguments to load_model function from specified flavor. Defaults
to None.

• save_args (Dict[str, Any], optional): Arguments to save_model function from specified flavor. Defaults
to None.

• version (Version, optional): Kedro version to use. Defaults to None.

The use ifs very similar to MlflowModelLoggerDataSet, but that you specify a filepath instead of a run_id:

from kedro_mlflow.io.models import MlflowModelLoggerDataSet
from sklearn.linear_model import LinearRegression

mlflow_model_logger=MlflowModelSaverDataSet(flavor="mlflow.sklearn", filepath="path/
→˓to/where/you/want/model")
mlflow_model_logger.save(LinearRegression().fit(data))

The same arguments are available, plus an additional version common to usual AbstractVersionedDataSet

mlflow_model_logger=MlflowModelSaverDataSet(
flavor="mlflow.sklearn",
filepath="path/to/where/you/want/model",
version="<valid-kedro-version>")

my_model= mlflow_model_logger.load()

4.2 Hooks

This package provides 2 new hooks.

4.2.1 MlflowPipelineHook

This hook :

1. manages mlflow settings at the beginning and the end of the run (run start / end).

2. log useful informations for reproducibility as mlflow tags (including kedro Journal information and the
commands used to launch the run).

3. register the pipeline as a valid mlflow model if it is a PipelineML instance

4.2. Hooks 35

https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#workflows
https://kedro.readthedocs.io/en/stable/kedro.io.AbstractVersionedDataSet.html


kedro-mlflow, Release 0.4.0

4.2.2 MlflowNodeHook

This hook:

1. must be used with the MlflowPipelineHook

2. autolog nodes parameters each time the pipeline is run (with kedro run or programatically).

4.3 Pipelines

4.3.1 PipelineML and pipeline_ml_factory

PipelineML is a new class which extends Pipeline and enable to bind two pipelines (one of training, one of in-
ference) together. This class comes with a KedroPipelineModel class for logging it in mlflow. A pipeline logged
as a mlflow model can be served using mlflow models serve and mlflow models predict command.

The PipelineML class is not intended to be used directly. A pipeline_ml_factory factory is provided for
user friendly interface.

Example within kedro template:

# in src/PYTHON_PACKAGE/pipeline.py

from PYTHON_PACKAGE.pipelines import data_science as ds

def create_pipelines(**kwargs) -> Dict[str, Pipeline]:
data_science_pipeline = ds.create_pipeline()
training_pipeline = pipeline_ml_factory(training=data_science_pipeline.only_nodes_

→˓with_tags("training"), # or whatever your logic is for filtering
inference=data_science_pipeline.only_

→˓nodes_with_tags("inference"))

return {
"ds": data_science_pipeline,
"training": training_pipeline,
"__default__": data_engineering_pipeline + data_science_pipeline,

}

Now each time you will run kedro run --pipeline=training (provided you registered
MlflowPipelineHook in you run.py), the full inference pipeline will be registered as a mlflow model
(with all the outputs produced by training as artifacts : the machine learning model, but also the scaler, vectorizer,
imputer, or whatever object fitted on data you create in training and that is used in inference).

Note that:

• the inference pipeline input_name can be a MemoryDataSet and it belongs to inference pipeline
inputs

• Apart form input_name, all other inference pipeline inputs must be persisted locally on disk (i.e. it
must not be MemoryDataSet and must have a local filepath)

• the inference pipeline inputs must belong to training outputs (vectorizer, binarizer, machine learning
model. . . )

• the inference pipeline must have one and only one output

Note: If you want to log a PipelineML object in mlflow programatically, you can use the following code snippet:

36 Chapter 4. Introduction



kedro-mlflow, Release 0.4.0

from pathlib import Path
from kedro.framework.context import load_context
from kedro_mlflow.mlflow import KedroPipelineModel
from mlflow.models import ModelSignature

# pipeline_training is your PipelineML object, created as previsously
catalog = load_context(".").io

# artifacts are all the inputs of the inference pipelines that are persisted in the
→˓catalog
artifacts = pipeline_training.extract_pipeline_artifacts(catalog)

# get the schema of the input dataset
input_data = catalog.load(pipeline_training.input_name)
model_signature = infer_signature(model_input=input_data)

mlflow.pyfunc.log_model(
artifact_path="model",
python_model=KedroPipelineModel(

pipeline_ml=pipeline_training,
catalog=catalog

),
artifacts=artifacts,
conda_env={"python": "3.7.0"},
model_signature=model_signature

)

4.4 Cli commands

4.4.1 cli

4.4.2 init

kedro mlflow init: this command is needed to initalize your project. You cannot run any other commands
before you run this one once. It performs 2 actions: - creates a mlflow.yml configuration file in your conf/
base folder - replace the src/PYTHON_PACKAGE/run.py file by an updated version of the template. If your
template has been modified since project creation, a warning wil be raised. You can either run kedro mlflow
init --force to ignore this warning (but this will erase your run.py) or set hooks manually.

4.4. Cli commands 37



kedro-mlflow, Release 0.4.0

4.4.3 ui

kedro mlflow ui: this command opens the mlflow UI (basically launches the mlflow ui command with the
configuration of your mlflow.yml file)

4.5 Configuration

The python objecti is KedroMlflowConfig and it can be filled through mlflow.yml.

More details are coming soon.

38 Chapter 4. Introduction



CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

39


	Introduction
	Introduction
	What is Kedro?
	What is Mlflow?
	A brief comparison between Kedro and Mlflow
	Configuration and prototyping: Kedro 1 - 0 Mlflow
	Versioning: Kedro 1 - 1 Mlflow
	Model packaging and service: Kedro 1 - 2 Mlflow
	Conclusion: Use Kedro and add Mlflow for machine learning projects


	Motivation
	When should I use kedro-mlflow?
	Why should I use kedro-mlflow ?
	Benchmark of existing solutions
	Enforcing Kedro principles


	Installation
	Pre-requisites
	Installation guide
	Check the installation
	Available commands


	Introduction
	Example project
	Check your installation
	Install the toy project
	Installation with kedro>=0.16.3
	Installation with kedro>=0.16.0, <=0.16.2


	Install dependencies
	First steps with the plugins
	Initialize kedro-mlflow
	Run the pipeline
	Open the UI
	Parameters versioning
	Journal information
	Artifacts



	Introduction
	Migration guide
	Migration from 0.3.0 to 0.4.0
	Catalog entries
	Hooks
	KedroPipelineModel


	Scope
	In the scope of the tutorial
	Out of scope of the tutorial

	Setup your Kedro project
	Check the installation
	Create a kedro project
	Activate kedro-mlflow in your kedro project
	Setting up the kedro-mlflow configuration file
	Declaring kedro-mlflow hooks


	Configure mlflow inside your project
	Context: mlflow tracking under the hood
	The mlflow.yml file

	Parameters versioning
	Automatic parameters versioning
	How does MlflowNodeHook operates under the hood?
	Frequently Asked Questions
	Will parameters be recorded if the pipeline fails during execution?
	How are parameters detected by the plugin?
	How can I register a parameter if I use a TemplatedConfigLoader?


	Versioning Kedro DataSets
	What is artifact tracking?
	How to version data in a kedro project?
	Frequently asked questions
	Can I pass extra parameters to the MlflowArtifactDataSet for finer control?
	Can I use the MlflowArtifactDataSet in interactive mode?
	How do I upload an artifact to a non local destination (e.g. an S3 or blog storage)?
	Can I log an artifact in a specific run?
	Can I create a remote folder/subfolders architecture to organize the artifacts ?


	Version model
	What is model tracking?
	How to track models using MLflow in Kedro project?
	Frequently asked questions?
	How is it working under the hood?
	How can I track a custom MLflow model flavor?


	Version metrics
	What is metric tracking?
	How to version metrics in a kedro project?
	How to return metrics from a node?

	Opening the UI
	The mlflow user interface
	The kedro-mlflow helper

	Pipeline packaging

	Introduction
	New DataSet
	MlflowArtifactDataSet
	Models DataSets
	MlflowModelLoggerDataSet
	MlflowModelSaverDataSet


	Hooks
	MlflowPipelineHook
	MlflowNodeHook

	Pipelines
	PipelineML and pipeline_ml_factory

	Cli commands
	cli
	init
	ui

	Configuration

	Indices and tables

