kedro-mlflow
stable
  • Introduction
    • Kedro vs Mlflow
      • What is Kedro?
      • What is Mlflow?
      • A brief comparison between Kedro and Mlflow
        • Configuration and prototyping: Kedro 1 - 0 Mlflow
        • Versioning: Kedro 1 - 1 Mlflow
        • Model packaging and service: Kedro 1 - 2 Mlflow
        • Conclusion: Use Kedro and add Mlflow for machine learning projects
    • Motivation behind the plugin
      • When should I use kedro-mlflow?
      • Why should I use kedro-mlflow?
        • Benchmark of existing solutions
        • Enforcing Kedro principles
  • Installation
    • Install the plugin
      • Pre-requisites
        • Create a virtual environment
        • Check your kedro version
      • Install the plugin
        • Install from PyPI
        • Install from sources
      • Check the installation
      • Available commands
    • Setup your kedro project
      • Create a kedro project
      • Activate kedro-mlflow in your kedro project
        • Setting up the kedro-mlflow configuration file
        • Declaring kedro-mlflow hooks
    • Migration guide between versions
      • Migration from 0.10.x to 0.11.x
      • Migration from 0.9.x to 0.10.x
      • Migration from 0.8.x to 0.9.x
      • Migration from 0.7.x to 0.8.x
      • Migration from 0.6.x to 0.7.x
      • Migration from 0.5.x to 0.6.x
      • Migration from 0.4.x to 0.5.x
      • Migration from 0.4.0 to 0.4.1
      • Migration from 0.3.x to 0.4.x
        • Catalog entries
        • Hooks
        • KedroPipelineModel
  • Getting Started
    • Goal of the tutorial
    • Create an example project
      • Install the plugin in a virtual environment
      • Install the toy project
        • Installation with kedro>=0.16.3
        • Installation with kedro>=0.16.0, <=0.16.2
      • Install dependencies
    • First steps with ``kedro-mlflow``
      • Initialize kedro-mlflow
      • Run the pipeline
      • Open the UI
        • Parameters versioning
        • Journal information
        • Artifacts
      • Going further
  • Experimentation tracking
    • Configure mlflow
      • Context: mlflow tracking under the hood
      • The mlflow.yml file
        • Configure the tracking server
        • Deactivate tracking under conditions
        • Configure mlflow experiment
        • Configure the run
        • Extra tracking configuration
        • Configure the user interface
    • Version parameters
      • Automatic parameters versioning
      • How does MlflowNodeHook operates under the hood?
      • Frequently Asked Questions
        • Will parameters be recorded if the pipeline fails during execution?
        • How are parameters detected by the plugin?
        • How can I register a parameter if I use a TemplatedConfigLoader?
    • Version datasets
      • What is artifact tracking?
      • How to version data in a kedro project?
      • Frequently asked questions
        • Can I pass extra parameters to the MlflowArtifactDataSet for finer control?
        • Can I use the MlflowArtifactDataSet in interactive mode?
        • How do I upload an artifact to a non local destination (e.g. an S3 or blog storage)?
        • Can I log an artifact in a specific run?
        • Can I reload an artifact from an existing run to use it in another run ?
        • Can I create a remote folder/subfolders architecture to organize the artifacts?
    • Version models
      • What is model tracking?
      • How to track models using MLflow in Kedro project?
      • Frequently asked questions?
        • How is it working under the hood?
        • How can I track a custom MLflow model flavor?
        • How can I save model locally and log it in MLflow in one step?
    • Version metrics
      • What is metric tracking?
      • How to version metrics in a kedro project?
        • Saving a single float as a metric with MlflowMetricDataSet
        • Saving the evolution of a metric during training with MlflowMetricHistoryDataSet
        • Saving several metrics with their entire history with MlflowMetricsDataSet
      • How to return metrics from a node?
    • Open the User Interface
      • The mlflow user interface
      • The kedro-mlflow helper
  • Pipeline serving
    • Reminder on Mlflow Models
      • Introduction to Mlflow Models
      • Pre-requisite for serving a pipeline
    • Log a Pipeline as model with ``KedroPipelineModel``
    • Log a Pipeline as model with the CLI
    • Automatically log inference pipeline after training
      • Getting started
      • Complete step by step demo project with code
      • Motivation
    • Deployments patterns for ``KedroPipelineModel`` models
  • A mlops framework for continuous model serving
    • Why we need a mlops framework for development lifecycle
      • Machine learning deployment is hard because it comes with a lot of constraints and no adequate tooling
        • Identifying the challenges to address when deploying machine learning
        • A comparison between traditional software development and machine learning projects
      • Deployment issues addressed by kedro-mlflow and their solutions
        • Out of scope
        • Issue 1: The training process is poorly reproducible
        • Issue 2: The data scientist and stakeholders focus on training
        • Issue 3: Inference and training are entirely decoupled
        • Issue 4: Data scientists do not handle business objects
        • Overcoming these problems: support an organisational solution with an efficient tool
    • The architecture of a machine learning project
      • Definition: apps of a machine learning projects
      • Difference between an app and a Kedro pipeline
      • Apps development lifecycle in a machine learning project
        • The data scientist creates at least part of the 3 apps
        • The etl_app
        • The ml_app
        • The user_app
    • An efficient tool for model serving and training / inference synchronization
      • Reminder
      • Enforcing these principles with a dedicated tool
        • Synchronizing training and inference pipeline
        • Packaging and serving a Kedro Pipeline
        • kedro-mlflow’s magic: inference autologging
        • Reuse the model in kedro
  • Interactive use
    • How to use in a notebook
      • Reminder on mlflow’s limitations with interactive use
      • Setup mlflow configuration in your notebook
      • Difference with running through the CLI
      • Guidelines and best practices suggestions
  • Python objects
    • DataSets
      • MlflowArtifactDataSet
      • Metrics DataSets
        • MlflowMetricDataSet
        • MlflowMetricHistoryDataSet
      • Models DataSets
        • MlflowModelLoggerDataSet
        • MlflowModelSaverDataSet
        • MlflowModelRegistryDataSet
    • Hooks
      • MlflowHook
    • Pipelines
      • PipelineML and pipeline_ml_factory
    • CLI
      • init
      • ui
      • modelify
    • Configuration
  • API documentation
    • Datasets
      • Artifact DataSet
        • MlflowArtifactDataSet
      • Metrics DataSet
        • MlflowMetricDataSet
        • MlflowMetricHistoryDataSet
        • MlflowMetricsDataSet
      • Models DataSet
        • MlflowAbstractModelDataSet
        • MlflowModelLoggerDataSet
        • MlflowModelSaverDataSet
        • MlflowModelRegistryDataSet
    • CLI
      • init
      • ui
      • modelify
    • Pipelines
      • KedroMlflowPipelineMLError
      • PipelineML
        • PipelineML.KPM_KWARGS_DEFAULT
        • PipelineML.LOG_MODEL_KWARGS_DEFAULT
        • PipelineML.__init__()
        • PipelineML.filter()
        • PipelineML.from_inputs()
        • PipelineML.from_nodes()
        • PipelineML.inference
        • PipelineML.input_name
        • PipelineML.only_nodes()
        • PipelineML.only_nodes_with_inputs()
        • PipelineML.only_nodes_with_namespace()
        • PipelineML.only_nodes_with_outputs()
        • PipelineML.only_nodes_with_tags()
        • PipelineML.tag()
        • PipelineML.to_nodes()
        • PipelineML.to_outputs()
        • PipelineML.training
      • pipeline_ml_factory()
    • Custom Mlflow Models
      • KedroPipelineModel
        • KedroPipelineModel.__init__()
        • KedroPipelineModel.copy_mode
        • KedroPipelineModel.extract_pipeline_artifacts()
        • KedroPipelineModel.load_context()
        • KedroPipelineModel.predict()
      • KedroPipelineModelError
    • Configuration
      • DictParamsOptions
        • DictParamsOptions.Config
        • DictParamsOptions.flatten
        • DictParamsOptions.recursive
        • DictParamsOptions.sep
      • DisableTrackingOptions
        • DisableTrackingOptions.Config
        • DisableTrackingOptions.pipelines
      • ExperimentOptions
        • ExperimentOptions.Config
        • ExperimentOptions.name
        • ExperimentOptions.restore_if_deleted
      • KedroMlflowConfig
        • KedroMlflowConfig.Config
        • KedroMlflowConfig.server
        • KedroMlflowConfig.setup()
        • KedroMlflowConfig.tracking
        • KedroMlflowConfig.ui
      • MlflowParamsOptions
        • MlflowParamsOptions.Config
        • MlflowParamsOptions.dict_params
        • MlflowParamsOptions.long_params_strategy
      • MlflowServerOptions
        • MlflowServerOptions.Config
        • MlflowServerOptions.credentials
        • MlflowServerOptions.mlflow_registry_uri
        • MlflowServerOptions.mlflow_tracking_uri
        • MlflowServerOptions.request_header_provider
      • MlflowTrackingOptions
        • MlflowTrackingOptions.Config
        • MlflowTrackingOptions.disable_tracking
        • MlflowTrackingOptions.experiment
        • MlflowTrackingOptions.params
        • MlflowTrackingOptions.run
      • RequestHeaderProviderOptions
        • RequestHeaderProviderOptions.Config
        • RequestHeaderProviderOptions.init_kwargs
        • RequestHeaderProviderOptions.pass_context
        • RequestHeaderProviderOptions.type
      • RunOptions
        • RunOptions.Config
        • RunOptions.id
        • RunOptions.name
        • RunOptions.nested
      • UiOptions
        • UiOptions.Config
        • UiOptions.host
        • UiOptions.port
    • Notebook
    • Hooks
      • Node Hook
      • Pipeline Hook
kedro-mlflow
  • Python Module Index

Python Module Index

k
 
k
- kedro_mlflow
    kedro_mlflow.config.kedro_mlflow_config
    kedro_mlflow.io.artifacts.mlflow_artifact_dataset
    kedro_mlflow.io.metrics.mlflow_metric_dataset
    kedro_mlflow.io.metrics.mlflow_metric_history_dataset
    kedro_mlflow.io.metrics.mlflow_metrics_dataset
    kedro_mlflow.io.models.mlflow_abstract_model_dataset
    kedro_mlflow.io.models.mlflow_model_logger_dataset
    kedro_mlflow.io.models.mlflow_model_registry_dataset
    kedro_mlflow.io.models.mlflow_model_saver_dataset
    kedro_mlflow.mlflow.kedro_pipeline_model
    kedro_mlflow.pipeline.pipeline_ml
    kedro_mlflow.pipeline.pipeline_ml_factory

© Copyright 2020, Yolan Honoré-Rougé. Revision 9df9c23b.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: stable
Versions
latest
stable
0.11.8
0.11.7
0.11.6
0.11.5
0.11.4
0.11.3
0.11.2
0.11.1
0.11.0
0.10.0
0.9.0
0.8.1
0.8.0
0.7.6
0.7.5
0.7.4
0.7.3
0.7.2
0.7.1
0.7.0
0.6.0
0.5.0
0.4.1
0.4.0
0.3.0
0.2.1
0.2.0
Downloads
pdf
On Read the Docs
Project Home
Builds